Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Rep ; 10(1): 19773, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188261


Estimation of prokaryotic growth rates is critical to understand the ecological role and contribution of different microbes to marine biogeochemical cycles. However, there is a general lack of knowledge on what factors control the growth rates of different prokaryotic groups and how these vary between sites and along seasons at a given site. We carried out several manipulation experiments during the four astronomical seasons in the coastal NW Mediterranean in order to evaluate the impact of grazing, viral mortality, resource competition and light on the growth and loss rates of prokaryotes. Gross and net growth rates of different bacterioplankton groups targeted by group-specific CARD-FISH probes and infrared microscopy (for aerobic anoxygenic phototrophs, AAP), were calculated from changes in cell abundances. Maximal group-specific growth rates were achieved when both predation pressure and nutrient limitation were experimentally minimized, while only a minimal effect of viral pressure on growth rates was observed; nevertheless, the response to predation removal was more remarkable in winter, when the bacterial community was not subjected to nutrient limitation. Although all groups showed increases in their growth rates when resource competition as well as grazers and viral pressure were reduced, Alteromonadaceae consistently presented the highest rates in all seasons. The response to light availability was generally weaker than that to the other factors, but it was variable between seasons. In summer and spring, the growth rates of AAP were stimulated by light whereas the growth of the SAR11 clade (likely containing proteorhodopsin) was enhanced by light in all seasons. Overall, our results set thresholds on bacterioplankton group-specific growth and mortality rates and contribute to estimate the seasonally changing contribution of various bacterioplankton groups to the function of microbial communities. Our results also indicate that the least abundant groups display the highest growth rates, contributing to the recycling of organic matter to a much greater extent than what their abundances alone would predict.

BMC Microbiol ; 20(1): 207, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660423


BACKGROUND: Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a standard marine medium comprising a total of 1561 bacterial strains, and covering a variety of oceanographic regions from different seasons and years, from 2009 to 2015. Specifically, our marine collection contains isolates from both photic (817) and aphotic layers (744), including the mesopelagic (362) and the bathypelagic (382), from the North Western Mediterranean Sea, the North and South Atlantic Ocean, the Indian, the Pacific, and the Arctic Oceans. We described the taxonomy, the phylogenetic diversity and the biogeography of a fraction of the marine culturable microorganisms to enhance our knowledge about which heterotrophic marine isolates are recurrently retrieved across oceans and along different depths. RESULTS: The partial sequencing of the 16S rRNA gene of all isolates revealed that they mainly affiliate with the classes Alphaproteobacteria (35.9%), Gammaproteobacteria (38.6%), and phylum Bacteroidetes (16.5%). In addition, Alteromonas and Erythrobacter genera were found the most common heterotrophic bacteria in the ocean growing in solid agar medium. When comparing all photic, mesopelagic, and bathypelagic isolates sequences retrieved from different stations, 37% of them were 100% identical. This percentage increased up to 59% when mesopelagic and bathypelagic strains were grouped as the aphotic dataset and compared to the photic dataset of isolates, indicating the ubiquity of some bacterial isolates along different ocean depths. Finally, we isolated three strains that represent a new species, and the genome comparison and phenotypic characterization of two of these strains (ISS653 and ISS1889) concluded that they belong to a new species within the genus Mesonia. CONCLUSIONS: Overall, this study highlights the relevance of culture-dependent studies, with focus on marine isolated bacteria from different oceanographic regions and depths, to provide a more comprehensive view of the culturable marine bacteria as part of the total marine microbial diversity.

Int J Syst Evol Microbiol ; 70(7): 4329-4338, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32589567


Strain ISS653T, isolated from Atlantic seawater, is a yellow pigmented, non-motile, Gram-reaction-negative rod-shaped bacterium, strictly aerobic and chemoorganotrophic, slightly halophilic (1-15 % NaCl) and mesophilic (4-37 °C), oxidase- and catalase-positive and proteolytic. Its major cellular fatty acids are iso-C15 : 0, iso-C15 : 0 2-OH, and iso-C17 : 0 3-OH; the major identified phospholipid is phosphatidylethanolamine and the major respiratory quinone is MK6. Genome size is 4.28 Mbp and DNA G+C content is 34.9 mol%. 16S rRNA gene sequence similarity places the strain among members of the family Flavobacteriaceae, with the type strains of Mesonia phycicola (93.2 %), Salegentibacter mishustinae (93.1 %) and Mesonia mobilis (92.9 %) as closest relatives. Average amino acid identity (AAI) and average nucleotide identity (ANI) indices show highest values with M. mobilis (81 % AAI; 78.9 % ANI), M. phycicola (76 % AAI; 76.3 % ANI), Mesonia maritima (72 % AAI, 74.9 % ANI), Mesonia hippocampi (64 % AAI, 70.8 % ANI) and Mesonia algae (68 % AAI; 72.2 % ANI). Phylogenomic analysis using the Up-to-date-Bacterial Core Gene set (UBCG) merges strain ISS653T in a clade with species of the genus Mesonia. We conclude that strain ISS653T represents a novel species of the genus Mesonia for which we propose the name Mesonia oceanica sp. nov., and strain ISS653T (=CECT 9532T=LMG 31236T) as the type strain. A second strain of the species, ISS1889 (=CECT 30008) was isolated from Pacific Ocean seawater. Data obtained throughout the Tara oceans expedition indicate that the species is more abundant in the mesopelagic dark ocean than in the photic layer and it is more frequent in the South Pacific, Indian and North Atlantic oceans.

Flavobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Oceano Atlântico , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Oceano Pacífico , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados
Int J Syst Evol Microbiol ; 70(2): 1231-1239, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31793854


Strain ISS155T, isolated from surface Mediterranean seawater, has cells that are Gram-reaction-negative, motile, strictly aerobic chemoorganotrophic, oxidase-positive, unable to reduce nitrate to nitrite, and able to grow with cellulose as the sole carbon and energy source. It is mesophilic, neutrophilic, slightly halophilic and has a requirement for sodium and magnesium ions. Its 16S rRNA gene sequence places the strain among members of Cellvibrionaceae, in the Gammaproteobacteria, with Agarilytica rhodophyticola 017T as closest relative (94.3 % similarity). Its major cellular fatty acids are C18 : 1, C16 : 0 and C16 : 1; major phospholipids are phosphatidyl glycerol, phosphatidyl ethanolamine and an unidentified lipid, and the major respiratory quinone is Q8. The genome size is 6.09 Mbp and G+C content is 45.2 mol%. A phylogenomic analysis using UBCG merges strain ISS155T in a clade with A. rhodophyticola, Teredinibacter turnerae, Saccharophagus degradans and Agaribacterium haliotis type strain genomes, all of them possessing a varied array of carbohydrate-active enzymes and the potential for polysaccharide degradation. Average amino acid identity indexes determined against available Cellvibrionaceae type strain genomes show that strain ISS155T is related to them by values lower than 60 %, with a maximum of 58 % to A. rhodophyticola 017T and 57 % to T. turnerae T7902T and S. degradans 2-40T. These results, together with the low 16S rRNA gene sequence similarities and differences in phenotypic profiles, indicate that strain ISS155T represents a new genus and species in Cellvibrionaceae, for which we propose the name Thalassocella blandensis gen. nov., sp. nov., and strain ISS155T (=CECT 9533T=LMG 31237T) as the type strain.

Phyllobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Mar Mediterrâneo , Fosfolipídeos/química , Phyllobacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730851


The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.

Biodiversidade , Plâncton/fisiologia , Água do Mar/microbiologia , Geografia , Modelos Teóricos , Oceanos e Mares , Filogenia
Water Sci Technol ; 79(2): 251-259, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30865596


The main goal of the present study was to enhance the rhizobacterium potential in a horizontal subsurface flow constructed wetland system planted with Phragmites australis, through environmentally friendly biological approaches. The bioinoculation of antagonist bacteria has been used to promote higher rhizosphere competence and improve pathogenic bacteria removal from wastewater. The experiment was performed both with single and sequential bioinoculation. The results showed that strain PFH1 played an active role in pathogenic bacteria removal, remarkably improving inactivation kinetics of the pathogenic tested bacterium Salmonella typhi in the plant rhizosphere. The single bioinoculation of selected bacteria into the rhizosphere of P. australis improved the kinetics of S. typhi inactivation by approximately 1 U-Log10 (N/N0) (N is the number of viable cultured bacteria at time t, N0 is the number of viable and cultivable bacteria at time t0) compared to the control. By a series of multi-bioinoculations, the enhancement of pathogenic bacteria reduction compared to the inhibition rate in the pilot-scale control was of 2 U-Log10(N/N0). These findings suggested that this strain represents a promising candidate to enhance water purification in constructed wetlands.

Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Microbiologia da Água , Áreas Alagadas , Bactérias , Rizosfera , Purificação da Água