Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Nano ; 13(2): 1097-1106, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30633498


Polymers with superior mechanical properties are desirable in many applications. In this work, polyethylene (PE) films reinforced with exfoliated thermally reduced graphene oxide (TrGO) fabricated using a roll-to-roll hot-drawing process are shown to have outstanding mechanical properties. The specific ultimate tensile strength and Young's modulus of PE/TrGO films increased monotonically with the drawing ratio and TrGO filler fraction, reaching up to 3.2 ± 0.5 and 109.3 ± 12.7 GPa, respectively, with a drawing ratio of 60× and a very low TrGO weight fraction of 1%. These values represent by far the highest reported to date for a polymer/graphene composite. Experimental characterizations indicate that as the polymer films are drawn, TrGO fillers are exfoliated, which is further confirmed by molecular dynamics (MD) simulations. Exfoliation increases the specific area of the TrGO fillers in contact with the PE matrix molecules. Molecular dynamics simulations show that the PE-TrGO interaction is stronger than the PE-PE intermolecular van der Waals interaction, which enhances load transfer from PE to TrGO and leverages the ultrahigh mechanical properties of TrGO.

J Phys Chem Lett ; 9(13): 3604-3611, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29902010


We report an investigation of lead halide perovskite CH3NH3PbBr3 nanocrystals and associated ligand molecules by combining several different state-of-the-art experimental techniques, including synchrotron radiation-based XPS and VUV PES of free-standing nanocrystals isolated in vacuum. By using this novel approach for perovskite materials, we could directly obtain complete band alignment to vacuum of both CH3NH3PbBr3 nanocrystals and the ligands widely used in their preparation. We discuss the possible influence of the ligand molecules to apparent perovskite properties, and we compare the electronic properties of nanocrystals to those of bulk material. The experimental results were supported by DFT calculations.

Chem Commun (Camb) ; 54(46): 5879-5882, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29785421


The optical and structural properties of hybrid perovskites can be tuned by the post-synthetic introduction of new cations. To advance the development of this approach, knowledge of the reaction mechanism is essential, but has not yet been elucidated. Here, the effect of n-octylamine on three-dimensional (3D) methylammonium lead bromide (MAPbBr3) was investigated by in situ X-ray photoelectron spectroscopy. Spectroscopic analysis indicated equimolar substitutions between octylammonium (OcA+) and methylammonium (MA+) cations that cause the formation of two-dimensional (2D) octylammonium lead bromide ((OcA)2PbBr4). The introduction of methylamine reversed these changes, and the cation exchange between MA+ and OcA+ caused the reverse conversion to MAPbBr3.