Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 321: 124496, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33302013

RESUMO

In this review investigate the apple orchard waste (AOW) is potential organic resources to produce multi-product and there sustainable interventions with biorefineries approaches to assesses the apple farm industrial bioeconomy. The thermochemical and biological processes like anaerobic digestion, composting and , etc., that generate distinctive products like bio-chemicals, biofuels, biofertilizers, animal feed and biomaterial, etc can be employed for AOW valorization. Integrating these processes can enhanced the yield and resource recovery sustainably. Thus, employing biorefinery approaches with allied different methods can link to the progression of circular bioeconomy. This review article mainly focused on the different biological processes and thermochemical that can be occupied for the production of waste to-energy and multi-bio-product in a series of reaction based on sustainability. Therefore, the biorefinery for AOW move towards identification of the serious of the reaction with each individual thermochemical and biological processes for the conversion of one-dimensional providences to circular bioeconomy.

2.
Lett Appl Microbiol ; 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33305461

RESUMO

Enhancement of the desulfurization activities of Paenibacillus strains 32O-W and 32O-Y were investigated using dibenzothiophene (DBT) and DBT sulfone (DBTS) as sources of sulfur in growth experiments. Strains 32O-W, 32O-Y and their co-culture (32O-W plus 32O-Y), and Vitreoscilla hemoglobin (VHb) expressing recombinant strain 32O-Yvgb and its co-culture with strain 32O-W were grown at varying concentrations (0.1-2 mmol L-1 ) of DBT or DBTS for 96 h, and desulfurization measured by production of 2-hydroxybiphenyl (2-HBP) and disappearance of DBT or DBTS. Of the four cultures grown with DBT as sulfur source, the best growth occurred for the 32O-Yvgb plus 32O-W co-culture at 0.1 and 0.5 mmol L-1 DBT. Although the presence of vgb provided no consistent advantage regarding growth on DBTS, strain 32O-W, as predicted by previous work, was shown to contain a partial 4S desulfurization pathway allowing it to metabolize this 4S pathway intermediate.

3.
Waste Manag ; 113: 261-269, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544839

RESUMO

The sidestreams produced during fish processing end in a separation tank where the resulting fractions follow biogas production or wastewater treatment. These streams can alternatively be used for production of protein-rich fungal biomass for e.g. fish feed applications, a product in increasing demand. These streams and upper streams originated during fish processing were used in this study for production of biomass using the edible filamentous fungus Rhizopus oryzae. The COD of the streams varied between 11 and 54 kg/m3 and, after fungal conversion of organic matter into protein-rich biomass and separation, a reduction of 34-69% was achieved. The stream origin had an effect on the final production and composition of the fungal biomass: 480 kg of biomass containing 33% protein per ton of COD were produced after cultivation in the separation tank streams, while 220 kg of biomass containing 62% protein per ton of COD were produced in upper sidestreams with lower amounts of suspended solids. Changing the initial pH (6.1-6.5) to 5.0 had a negative influence on the amount of biomass produced while medium supplementation had no influence. Thus, fish processing sidestreams can be diverted from biogas production and wastewater treatment to the production of protein-rich biomass for feed applications.


Assuntos
Reatores Biológicos , Rhizopus , Animais , Biomassa , Peixes
4.
J Colloid Interface Sci ; 530: 137-145, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29966846

RESUMO

Lithium-Sulfur (Li-S) batteries are mostly known for their high energy density and cost-effectiveness. However, their intrinsic problems hinder their implementation into the marketplace. The most pronounced problems are the parasitic reactions which occur between lithium polysulfides species and lithium metal anode, the volume expansion of sulfur (80%) at the end of discharge and the safety issues which are linked with the use of lithium metal. Herein this work, two approaches are applied to prevent these effects; one approach is the use of Li2S as cathode material, instead of starting from sulfur powder, both to circumvent the volume expansion of sulfur taking place during discharge and to enable lithium-free anodes cell assembling (i.e. Si-Li2S or Sn-Li2S cell configurations). Second approach deals with the lithium anode protection by SnO2 containing freestanding pyrolyzed bacterial cellulose interlayers located between anode and cathode electrodes. Since bacterial celluloses are formed in the presence of SnO2 nanoparticles, the resulting structure enables intimate contact between carbon and SnO2 nanoparticles. By employing Li2S cathode and freestanding interlayer concurrently, 468 mAh g-1 discharge capacity is obtained at C/10 current density over 100 cycles.


Assuntos
Carbono/química , Celulose/química , Fontes de Energia Elétrica , Compostos de Lítio/química , Nanofibras/química , Nanopartículas/química , Sulfetos/química , Compostos de Estanho/química , Bactérias/química , Nanofibras/ultraestrutura , Nanopartículas/ultraestrutura , Polissacarídeos Bacterianos/química , Enxofre/química
5.
Bioengineered ; 8(5): 651-660, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28394725

RESUMO

This study describes an efficient and reusable process for ethanol production from medium containing whey powder, using alginate immobilized ethanologenic E. coli strains either expressing (TS3) or not expressing (FBR5) Vitreoscilla hemoglobin. Reuseabilities of the FBR5 and TS3 strains were investigated regarding their ethanol production capacities over the course of 15 successive 96-h batch fermentations. The ethanol production was fairly stable over the entire duration of the experiment, with strain TS3 maintaining a substantial advantage over strain FBR5. Storage of both strains in 2 different solutions for up to 60 d resulted in only a modest loss of ethanol production, with strain TS3 consistently outperforming strain FBR5 by a substantial amount. Strains stored for 15 or 30 d maintained their abilities to produce ethanol without dimunition over the course of 8 successive batch fermentations; again strain TS3 maintained a substantial advantage over strain FBR5 throughout the entire experiment. Thus, immobilization is a useful strategy to maintain the advantage in ethanol productivity afforded by expression of Vitreoscilla hemoglobin over long periods of time and large numbers of repeated batch fermentations, including, as in this case, using media with food processing wastes as the carbon source.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Células Imobilizadas/fisiologia , Escherichia coli/fisiologia , Etanol/metabolismo , Melhoramento Genético/métodos , Hemoglobinas/metabolismo , Hemoglobinas Truncadas/metabolismo , Proteínas de Bactérias/genética , Reatores Biológicos/microbiologia , Proliferação de Células , Etanol/isolamento & purificação , Hemoglobinas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Hemoglobinas Truncadas/genética
6.
Bioengineered ; 8(2): 171-181, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-27579556

RESUMO

Ethanol production from whey powder was investigated by using free as well as alginate immobilized E. coli and E. coli expressing Vitreoscilla hemoglobin (VHb) in both shake flask and fermenter cultures. Media with varying levels of whey (lactose contents of 3%, 5%, 8% or 15%) and yeast extract (0.3% or 0.5%) were evaluated with fermentation times of 48-96 h. Immobilization and VHb expression resulted in higher ethanol production with all media; the increases ranged from 2% to 89% for immobilization and from 2% to 182% for VHb expression. It was determined that growth medium containing 8% lactose with 0.5% yeast extract yielded the highest ethanol production for free or immobilized strains, with or without VHb expression, in both shake flask and fermenter cultures. Immobilization with alginate was found to be a promising process for ethanol production by VHb-expressing ethanologenic E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Etanol/metabolismo , Hemoglobinas Truncadas/metabolismo , Soro do Leite/química , Alginatos/metabolismo , Fermentação , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo
7.
Biosci Biotechnol Biochem ; 78(4): 687-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036968

RESUMO

This work investigated the improvement of ethanol production by engineered ethanologenic Escherichia coli to express the hemoglobin from the bacterium Vitreoscilla (VHb). Ethanologenic E. coli strain FBR5 and FBR5 transformed with the VHb gene in two constructs (strains TS3 and TS4) were grown in cheese whey (CW) medium at small and large scales, at both high and low aeration, or with whey powder (WP) or sugar beet molasses hydrolysate (SBMH) media at large scale and low aeration. Culture pH, cell growth, VHb levels, and ethanol production were evaluated after 48 h. VHb expression in TS3 and TS4 enhanced their ethanol production in CW (21-419%), in WP (17-362%), or in SBMH (48-118%) media. This work extends the findings that "VHb technology" may be useful for improving the production of ethanol from waste and byproducts of various sources.


Assuntos
Proteínas de Bactérias/genética , Beta vulgaris/química , Queijo , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Melaço , Hemoglobinas Truncadas/genética , Reatores Biológicos/microbiologia , Engenharia Genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA