Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806446

RESUMO

Conjugated donor-acceptor molecules with intramolecular charge transfer absorption are employed for single-component organic solar cells. Among the five types of donor-acceptor molecules, the strong push-pull structure of DTDCPB resulted in solar cells with high JSC, an internal quantum efficiency exceeding 20%, and high VOC exceeding 1 V with little photon energy loss around 0.7 eV. The exciton binding energy (EBE), which is a key factor in enhancing the photocurrent in the single-component device, was determined by quantum chemical calculation. The relationship between the photoexcited state and the device performance suggests that the strong internal charge transfer is effective for reducing the EBE. Furthermore, molecular packing in the film is shown to influence photogeneration in the film bulk.

2.
Sci Technol Adv Mater ; 22(1): 985-997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992500

RESUMO

We set out to demonstrate the development of a highly conductive polymer based on poly-(3,4-ethylenedithia thiophene) (PEDTT), PEDOTs structural analogue historically notorious for structural disorder and limited conductivities. The caveat therein was previously described to lie in intra-molecular repulsions. We demonstrate how a tremendous >2600-fold improvement in conductivity and metallic features, such as magnetoconductivity can be achieved. This is achieved through a careful choice of the counter-ion (sulphate) and the use of oxidative chemical vapour deposition (oCVD). It is shown that high structural order on the molecular level was established and the formation of crystallites tens of nanometres in size was achieved. We infer that the sulphate ions therein intercalate between the polymer chains, thus forming densely packed crystals of planar molecules with extended π-systems. Consequently, room-temperature conductivities of above 1000 S cm-1 are achieved, challenging those of conventional PEDOT:PSS. The material is in the critical regime of the metal-insulator transition.

3.
Adv Sci (Weinh) ; 7(24): 2002586, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344134

RESUMO

X-ray detectors play a pivotal role in development and advancement of humankind, from far-reaching impact in medicine to furthering the ability to observe distant objects in outer space. While other electronics show the ability to adapt to flexible and lightweight formats, state-of-the-art X-ray detectors rely on materials requiring bulky and fragile configurations, severely limiting their applications. Lead halide perovskites is one of the most rapidly advancing novel materials with success in the field of semiconductor devices. Here, an ultraflexible, lightweight, and highly conformable passively operated thin film perovskite X-ray detector with a sensitivity as high as 9.3 ± 0.5 µC Gy-1 cm-2 at 0 V and a remarkably low limit of detection of 0.58 ± 0.05 µGy s-1 is presented. Various electron and hole transporting layers accessing their individual impact on the detector performance are evaluated. Moreover, it is shown that this ultrathin form-factor allows for fabrication of devices detecting X-rays equivalently from front and back side.

4.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374613

RESUMO

A series of novel soluble nature-inspired flavin derivatives substituted with short butyl and bulky ethyl-adamantyl alkyl groups was prepared via simple and straightforward synthetic approach with moderate to good yields. The comprehensive characterization of the materials, to assess their application potential, has demonstrated that the modification of the conjugated flavin core enables delicate tuning of the absorption and emission properties, optical bandgap, frontier molecular orbital energies, melting points, and thermal stability. Moreover, the thin films prepared thereof exhibit smooth and homogeneous morphology with generally high stability over time.


Assuntos
Alquilantes/química , Riboflavina/química , Semicondutores , Alquilação
5.
ACS Appl Energy Mater ; 3(11): 10611-10618, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33251486

RESUMO

In this report, we present results on the electrocatalytic activity of conducting polymers [polyaniline (PANI) and polypyrrole (PPy)] toward the electrochemical oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). The electropolymerization of the polymers and electrolysis conditions were optimized for H2O2 production. On flat glassy carbon (GC) electrodes, the faradaic efficiency (FE) for H2O2 production was significantly improved by the polymers. Rotating disc electrode (RDE) studies revealed that this is mainly a result of blocking further H2O2 to the water reduction pathway by the polymers. PPy on carbon paper (CP) significantly increased the molar production of H2O2 by over 250% at an average FE of above 95% compared to bare CP with a FE of 25%. Thus, the polymers are acting as catalysts on the electrode for the ORR, although their catalytic mechanisms differ from other electrocatalysts.

6.
ACS Appl Mater Interfaces ; 12(41): 46530-46538, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32940032

RESUMO

Nanostructure incorporation into devices plays a key role in improving performance, yet processes for preparing two-dimensional (2D) arrays of colloidal nanoparticles tend not to be universally applicable, particularly for soft and oxygen-sensitive substrates for organic and perovskite-based electronics. Here, we show a method of transferring reverse micelle-deposited (RMD) nanoparticles (perovskite and metal oxide) on top of an organic layer, using a functionalized graphene carrier layer for transfer printing. As the technique can be applied universally to RMD nanoparticles, we used magnetic (γ-Fe2O3) and luminescent (methylammonium lead bromide (MAPbBr3)) nanoparticles to validate the transfer-printing methodology. The strong photoluminescence from the MAPbBr3 under UV illumination and high intrinsic field of the γ-Fe2O3 as measured by magnetic force microscopy (MFM), coupled with Raman measurements of the graphene layer, confirm that all components survive the transfer-printing process with little loss of properties. Such an approach to introducing uniform 2D arrays of nanoparticles onto sensitive substrates opens up new avenues to tune the device interfacial properties.

7.
Sci Rep ; 10(1): 15720, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973262

RESUMO

This work reports on an optimized procedure to synthesize methylammonium bromide perovskite nanoparticles. The ligand-assisted precipitation synthetic pathway for preparing nanoparticles is a cost-effective and promising method due to its ease of scalability, affordable equipment requirements and convenient operational temperatures. Nevertheless, there are several parameters that influence the resulting optical properties of the final nanomaterials. Here, the influence of the choice of solvent system, capping agents, temperature during precipitation and ratios of precursor chemicals is described, among other factors. Moreover, the colloidal stability and stability of the precursor solution is studied. All of the above-mentioned parameters were observed to strongly affect the resulting optical properties of the colloidal solutions. Various solvents, dispersion media, and selection of capping agents affected the formation of the perovskite structure, and thus qualitative and quantitative optimization of the synthetic procedure conditions resulted in nanoparticles of different dimensions and optical properties. The emission maxima of the nanoparticles were in the 508-519 nm range due to quantum confinement, as confirmed by transmission electron microscopy. This detailed study allows the selection of the best optimal conditions when using the ligand-assisted precipitation method as a powerful tool to fine-tune nanostructured perovskite features targeted for specific applications.

8.
Nanoscale ; 12(31): 16556-16561, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32743623

RESUMO

Photon cooling via anti-Stokes photoluminescence (ASPL) is a promising approach to realize all-solid-state cryo-refrigeration by photoexcitation. Photoluminescence quantum yields close to 100% and a strong coupling between phonons and excited states are required to achieve net cooling. We have studied the anti-Stokes photoluminescence of thin films of methylammonium lead bromide nanoparticles. We found that the anti-Stokes photoluminescence is thermally activated with an activation energy of ∼80 meV. At room temperature the ASPL up-conversion efficiency is ∼60% and it depends linearly on the excitation intensity. Our results suggest that upon further optimization of their optical properties, the investigated particles could be promising candidates for the demonstration of photon cooling in thin solid films.

9.
ACS Appl Mater Interfaces ; 12(29): 32615-32621, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32573248

RESUMO

Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stability in both aqueous and organic solvents compared to physisorbed AQ-based electrodes. While maintaining the electrochemical properties of the parent anthraquinone molecules, we observe a stable oxygen reduction reaction to hydrogen peroxide (H2O2). Using such AQ-MINT electrodes, 7 and 2 µmol of H2O2 are produced over 8 h under basic and neutral conditions, while the control system of SWCNTs produces 2.2 and 0.5 µmol, respectively. These results reveal the potential of this rotaxane-type immobilization approach for heterogenized electrocatalysis.

10.
Adv Mater ; 32(25): e1902177, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419235

RESUMO

The most active and efficient catalysts for the electrochemical hydrogen evolution reaction (HER) rely on platinum, a fact that increases the cost of producing hydrogen and thereby limits the widespread adoption of this fuel. Here, a metal-free organic electrocatalyst that mimics the platinum surface by implementing a high work function and incorporating hydrogen-affine hydrogen bonds is introduced. These motifs, inspired from enzymology, are deployed here as selective reaction centres. It is shown that the keto-amine hydrogen-bond motif enhances the rate-determining step in proton reduction to molecular hydrogen. The keto-amine-functionalized polymers reported herein evolve hydrogen at an overpotential of 190 mV. They share certain key properties with platinum: a similar work function and excellent electrochemical stability and chemical robustness. These properties allow the demonstration of one week of continuous HER operation without notable degradation nor delamination from the carrier electrode. Scaled continuous-flow electrolysis is reported and 1 L net molecular hydrogen is produced within less than 9 h using 2.3 mg of polymer electrocatalyst.

11.
Cryst Growth Des ; 20(3): 1388-1393, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161515

RESUMO

The efficiency of organo-lead halide perovskite-based optoelectronic devices is dramatically lower for amorphous materials compared to highly crystalline ones. Therefore, it is challenging to optimize and scale up the production of large-sized single crystals of perovskite materials. Here, we describe a novel and original approach to preparing lead halide perovskite single crystals by applying microwave radiation during the crystallization. The microwave radiation primarily causes precise heating control in the whole volume and avoids temperature fluctuations. Moreover, this facile microwave-assisted method of preparation is highly reproducible and fully automated, it and can be applied for various different perovskite structures. In addition, this cost-effective method is expected to be easily scalable because of its versatility and low energy consumption. The crystallization process has low heat losses; therefore, only a low microwave reactor power of 8-15 W during the temperature changes and of less than 1 W during the temperature holding is needed.

12.
ACS Appl Mater Interfaces ; 12(1): 250-259, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31816230

RESUMO

Using enzymes as bioelectrocatalysts is an important step toward the next level of biotechnology for energy production. In such biocatalysts, a sacrificial cofactor as an electron and proton source is needed. This is a great obstacle for upscaling, due to cofactor instability and product separation issues, which increase the costs. Here, we report a cofactor-free electroreduction of CO2 to a high energy density chemical (methanol) catalyzed by enzyme-graphene hybrids. The biocatalyst consists of dehydrogenases covalently bound on a well-defined carboxyl graphene derivative, serving the role of a conductive nanoplatform. This nanobiocatalyst achieves reduction of CO2 to methanol at high current densities, which remain unchanged for at least 20 h of operation, without production of other soluble byproducts. It is thus shown that critical improvements on the stability and rate of methanol production at a high Faradaic efficiency of 12% are possible, due to the effective electrochemical process from the electrode to the enzymes via the graphene platform.


Assuntos
Biocatálise , Dióxido de Carbono/química , Enzimas Imobilizadas/química , Grafite/química , Metanol/síntese química , Oxirredução
13.
Sci Rep ; 9(1): 12966, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506587

RESUMO

Combining the unique properties of peptides as versatile tools for nano- and biotechnology with lead halide perovskite nanoparticles can bring exceptional opportunities for the development of optoelectronics, photonics, and bioelectronics. As a first step towards this challenge sub 10 nm methylammonium lead bromide perovskite colloidal nanoparticles have been synthetizes using commercial cyclic peptide Cyclo(RGDFK), containing 5 amino acids, as a surface stabilizer. Perovskite nanoparticles passivated with Cyclo(RGDFK) possess charge transfer from the perovskite core to the peptide shell, resulting in lower photoluminescence quantum yields, which however opens a path for the application where charge transfer is favorable.


Assuntos
Compostos de Cálcio/química , Compostos Inorgânicos/química , Chumbo/química , Luminescência , Nanopartículas/química , Óxidos/química , Peptídeos Cíclicos/química , Semicondutores , Titânio/química
14.
Monatsh Chem ; 150(5): 885-900, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178606

RESUMO

Abstract: Stable radicals in organic conjugated molecules are of great interest due to their magnetic signals and broad optical absorptions. In this paper, we report on naphthalene, benzoperylene, perylene, terrylene, and quaterrylene carboximides, reduced under controlled conditions, where stable metal-free solid salts of radical anions could be obtained forming darkly colored solutions with line-rich UV/Vis/NIR spectra and exhibiting special magnetic properties. The most bathochromic shift of the absorption maxima extend from 760 until 1700 nm. Persistent paramagnetic properties of the solids were observed and temperature-dependent susceptibilities are measured.

15.
J Nanosci Nanotechnol ; 19(8): 4599-4602, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913754

RESUMO

Charge-transfer complex crystals have been extensively studied because of their metallic conductivity, photoconductivity, ambipolar charge transport, and high career mobility. Numerous studies of their applications for organic electric devices such as organic field effect transistors and solar cells have reported. However, bulky single crystals of charge-transfer complexes are difficult to handle, specifically to be made into a form of a thin film. Recently, nano/micro crystallization of charge-transfer crystal is attracted to realize thin film applications. In this paper, charge transfer complex nanorods composed of dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) were prepared by the reprecipitation method. The as-formed nanorods possess a kinetically metastable crystal structure different from the thermodynamically stable bulk crystal prepared by slow evaporation of the solvent. From photoconductive measurement, nanorod stacks show a significant photosensitivity (354.57 µA/W) on par with bulk crystal (417.14 µA/W). These results suggest dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) nanorods have a favorable crystal structure for carrier transport due to the difference of molecular stacking assembly.

16.
Chembiochem ; 20(9): 1196-1205, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609239

RESUMO

Microbial electrosynthetic cells containing Methylobacterium extorquens were studied for the reduction of CO2 to formate by direct electron injection and redox mediator-assisted approaches, with CO2 as the sole carbon source. The formation of a biofilm on a carbon felt (CF) electrode was achieved while applying a constant potential of -0.75 V versus Ag/AgCl under CO2 -saturated conditions. During the biofilm growth period, continuous H2 evolution was observed. The long-term performance for CO2 reduction of the biofilm with and without neutral red as a redox mediator was studied by an applied potential of -0.75 V versus Ag/AgCl. The neutral red was introduced into the systems in two different ways: homogeneous (dissolved in solution) and heterogeneous (electropolymerized onto the working electrode). The heterogeneous approach was investigated in the microbial system, for the first time, where the CF working electrode was coated with poly(neutral red) by the oxidative electropolymerization thereof. The formation of poly(neutral red) was characterized by spectroscopic techniques. During long-term electrolysis up to 17 weeks, the formation of formate was observed continuously with an average Faradaic efficiency of 4 %. With the contribution of neutral red, higher formate accumulation was observed. Moreover, the microbial electrosynthetic cell was characterized by means of electrochemical impedance spectroscopy to obtain more information on the CO2 reduction mechanism.


Assuntos
Dióxido de Carbono/metabolismo , Vermelho Neutro/metabolismo , Biocatálise , Biofilmes , Técnicas Eletroquímicas/métodos , Formiatos/metabolismo , Methylobacterium extorquens/fisiologia , Vermelho Neutro/química , Oxirredução , Polimerização
17.
Chem Mater ; 31(17): 6315-6346, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32565617

RESUMO

The electronics era is flourishing and morphing itself into Internet of Everything, IoE. At the same time, questions arise on the issue of electronic materials employed: especially their natural availability and low-cost fabrication, their functional stability in devices, and finally their desired biodegradation at the end of their life cycle. Hydrogen bonded pigments and natural dyes like indigo, anthraquinone and acridone are not only biodegradable and of bio-origin but also have functionality robustness and offer versatility in designing electronics and sensors components. With this Perspective, we intend to coalesce all the scattered reports on the above-mentioned classes of hydrogen bonded semiconductors, spanning across several disciplines and many active research groups. The article will comprise both published and unpublished results, on stability during aging, upon electrical, chemical and thermal stress, and will finish with an outlook section related to biological degradation and biological stability of selected hydrogen bonded molecules employed as semiconductors in organic electronic devices. We demonstrate that when the purity, the long-range order and the strength of chemical bonds, are considered, then the Hydrogen bonded organic semiconductors are the privileged class of materials having the potential to compete with inorganic semiconductors. As an experimental historical study of stability, we fabricated and characterized organic transistors from a material batch synthesized in 1932 and compared the results to a fresh material batch.

18.
Molecules ; 23(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189689

RESUMO

Flavins are known to be extremely versatile, thus enabling routes to innumerable modifications in order to obtain desired properties. Thus, in the present paper, the group of bio-inspired conjugated materials based on the alloxazine core is synthetized using two efficient novel synthetic approaches providing relatively high reaction yields. The comprehensive characterization of the materials, in order to evaluate the properties and application potential, has shown that the modification of the initial alloxazine core with aromatic substituents allows fine tuning of the optical bandgap, position of electronic orbitals, absorption and emission properties. Interestingly, the compounds possess multichromophoric behavior, which is assumed to be the results of an intramolecular proton transfer.


Assuntos
Materiais Biomiméticos/química , Biomimética , Riboflavina/química , Semicondutores , Biomimética/métodos , Eletroquímica , Flavinas/química , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Ultravioleta
19.
Adv Mater ; 30(25): e1707292, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29717514

RESUMO

An efficient nanoscale semiconducting optoelectronic system is reported, which is optimized for neuronal stimulation: the organic electrolytic photocapacitor. The devices comprise a thin (80 nm) trilayer of metal and p-n semiconducting organic nanocrystals. When illuminated in physiological solution, these metal-semiconductor devices charge up, transducing light pulses into localized displacement currents that are strong enough to electrically stimulate neurons with safe light intensities. The devices are freestanding, requiring no wiring or external bias, and are stable in physiological conditions. The semiconductor layers are made using ubiquitous and nontoxic commercial pigments via simple and scalable deposition techniques. It is described how, in physiological media, photovoltage and charging behavior depend on device geometry. To test cell viability and capability of neural stimulation, photostimulation of primary neurons cultured for three weeks on photocapacitor films is shown. Finally, the efficacy of the device is demonstrated by achieving direct optoelectronic stimulation of light-insensitive retinas, proving the potential of this device platform for retinal implant technologies and for stimulation of electrogenic tissues in general. These results substantiate the conclusion that these devices are the first non-Si optoelectronic platform capable of sufficiently large photovoltages and displacement currents to enable true capacitive stimulation of excitable cells.

20.
ChemCatChem ; 10(8): 1793-1797, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29780435

RESUMO

We report on a self-assembled system comprising a molecular copper-porphyrin photoelectrocatalyst, 5-(4-carboxy-phenyl)-10,15,20-triphenylporphyrinatocopper(II) (CuTPP-COOH), covalently bound to self-organized, anodic titania nanotube arrays (TiO2 NTs) for photoelectrochemical reduction of oxygen. Visible light irradiation of the porphyrin-covered TiO2 NTs under cathodic polarization up to -0.3 V vs. Normal hydrogen electrode (NHE) photocatalytically produces H2O2 in pH neutral electrolyte, at room temperature and without need of sacrificial electron donors. The formation of H2O2 upon irradiation is proven and quantified by direct colorimetric detection using 4-nitrophenyl boronic acid (p-NPBA) as a reactant. This simple approach for the attachment of a small molecular catalyst to TiO2 NTs may ultimately allow for the preparation of a low-cost H2O2 evolving cathode for efficient photoelectrochemical energy storage under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...