Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Bioorg Chem ; : 105505, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34838332

RESUMO

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.

2.
Front Oncol ; 11: 755746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692545

RESUMO

The Cre/loxP system is a powerful tool for the generation of animal models with precise spatial and temporal gene expression. It has proven indispensable in the generation of cancer models with tissue specific expression of oncogenes or the inactivation of tumor suppressor genes. Consequently, Cre-transgenic mice have become an essential prerequisite in basic cancer research. While it is unlikely that pigs will ever replace mice in basic research they are already providing powerful complementary resources for translational studies. But, although conditionally targeted onco-pigs have been generated, no Cre-driver lines exist for any of the major human cancers. To model human pancreatic cancer in pigs, Cre-driver lines were generated by CRISPR/Cas9-mediated insertion of codon-improved Cre (iCre) into the porcine PTF1A gene, thus guaranteeing tissue and cell type specific function which was proven using dual fluorescent reporter pigs. The method used can easily be adapted for the generation of other porcine Cre-driver lines, providing a missing tool for modeling human cancers in large animals.

3.
Sci Rep ; 11(1): 20775, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675248

RESUMO

We developed a transgenic mouse line that expresses the codon-optimized Flp recombinase under the control of the MMTV promoter in luminal epithelial cells of the mammary gland. In this report, we demonstrate the versatile applicability of the new MMTV-Flp strain to manipulate genes in a temporally and spatially controlled manner in the normal mammary gland, in luminal-type mammary tumors that overexpress ERBB2, and in a new KRAS-associated mammary cancer model. Although the MMTV-Flp is expressed in a mosaic pattern in the luminal epithelium, the Flp-mediated activation of a mutant KrasG12D allele resulted in basal-like mammary tumors that progressively acquired mesenchymal features. Besides its applicability as a tool for gene activation and cell lineage tracing to validate the cellular origin of primary and metastatic tumor cells, we employed the MMTV-Flp transgene together with the tamoxifen-inducible Cre recombinase to demonstrate that the combinatorial action of both recombinases can be used to delete or to activate genes in established tumors. In a proof-of-principle experiment, we conditionally deleted the JAK1 tyrosine kinase in KRAS-transformed mammary cancer cells using the dual recombinase approach and found that lack of JAK1 was sufficient to block the constitutive activation of STAT3. The collective results from the various lines of investigation showed that it is, in principle, feasible to manipulate genes in a ligand-controlled manner in neoplastic mammary epithelial cells, even when cancer cells acquire a state of cellular plasticity that may no longer support the expression of the MMTV-Flp transgene.

4.
EJNMMI Res ; 11(1): 104, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637026

RESUMO

The incidence and lethality of pancreatic ductal adenocarcinoma (PDAC) will continue to increase in the next decade. For most patients, chemotherapeutic combination therapies remain the standard of care. The development and successful implementation of precision oncology in other gastrointestinal tumor entities point to opportunities also for PDAC. Therefore, markers linked to specific therapeutic responses and important subgroups of the disease are needed. The MYC oncogene is a relevant driver in PDAC and is linked to drug resistance and sensitivity. Here, we update recent insights into MYC biology in PDAC, summarize the connections between MYC and drug responses, and point to an opportunity to image MYC non-invasively. In sum, we propose MYC-associated biology as a basis for the development of concepts for precision oncology in PDAC.

5.
Gastroenterology ; 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34599932

RESUMO

BACKGROUND & AIMS: Throughout life, the intestinal epithelium undergoes constant self-renewal from intestinal stem cells. Together with genotoxic stressors and failing DNA repair, this self-renewal causes susceptibility toward malignant transformation. X-box binding protein 1 (XBP1) is a stress sensor involved in the unfolded protein response (UPR). We hypothesized that XBP1 acts as a signaling hub to regulate epithelial DNA damage responses. METHODS: Data from The Cancer Genome Atlas were analyzed for association of XBP1 with colorectal cancer (CRC) survival and molecular interactions between XBP1 and p53 pathway activity. The role of XBP1 in orchestrating p53-driven DNA damage response was tested in vitro in mouse models of chronic intestinal epithelial cell (IEC) DNA damage (Xbp1/H2bfl/fl, Xbp1ΔIEC, H2bΔIEC, H2b/Xbp1ΔIEC) and via orthotopic tumor organoid transplantation. Transcriptome analysis of intestinal organoids was performed to identify molecular targets of Xbp1-mediated DNA damage response. RESULTS: In The Cancer Genome Atlas data set of CRC, low XBP1 expression was significantly associated with poor overall survival and reduced p53 pathway activity. In vivo, H2b/Xbp1ΔIEC mice developed spontaneous intestinal carcinomas. Orthotopic tumor organoid transplantation revealed a metastatic potential of H2b/Xbp1ΔIEC-derived tumors. RNA sequencing of intestinal organoids (H2b/Xbp1fl/fl, H2bΔIEC, H2b/Xbp1ΔIEC, and H2b/p53ΔIEC) identified a transcriptional program downstream of p53, in which XBP1 directs DNA-damage-inducible transcript 4-like (Ddit4l) expression. DDIT4L inhibits mechanistic target of rapamycin-mediated phosphorylation of 4E-binding protein 1. Pharmacologic mechanistic target of rapamycin inhibition suppressed epithelial hyperproliferation via 4E-binding protein 1. CONCLUSIONS: Our data suggest a crucial role for XBP1 in coordinating epithelial DNA damage responses and stem cell function via a p53-DDIT4L-dependent feedback mechanism.

6.
Cancer Discov ; 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282029

RESUMO

Biliary tract cancer ranks among the most lethal human malignancies, representing an unmet clinical need. Its abysmal prognosis is tied to an increasing incidence and a fundamental lack of mechanistic knowledge regarding the molecular basis of the disease. Here, we show that the Pdx1-positive extrahepatic biliary epithelium is highly susceptible toward transformation by activated PIK3CAH1047R but refractory to oncogenic KrasG12D. Using genome-wide transposon screens and genetic loss-of-function experiments, we discover context-dependent genetic interactions that drive extrahepatic cholangiocarcinoma (ECC) and show that PI3K signaling output strength and repression of the tumor suppressor p27Kip1 are critical context-specific determinants of tumor formation. This contrasts with the pancreas, where oncogenic Kras in concert with p53 loss is a key cancer driver. Notably, inactivation of p27Kip1 permits KrasG12D-driven ECC development. These studies provide a mechanistic link between PI3K signaling, tissue-specific tumor suppressor barriers, and ECC pathogenesis, and present a novel genetic model of autochthonous ECC and genes driving this highly lethal tumor subtype. SIGNIFICANCE: We used the first genetically engineered mouse model for extrahepatic bile duct carcinoma to identify cancer genes by genome-wide transposon-based mutagenesis screening. Thereby, we show that PI3K signaling output strength and p27Kip1 function are critical determinants for context-specific ECC formation.

7.
Metabolites ; 11(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070873

RESUMO

In modern oncology, the analysis and evaluation of treatment response are still challenging. Hence, we used a 13C-guided approach to study the impacts of the small molecule dichloroacetate (DCA) upon the metabolic response of pancreatic cancer cells. Two different oncogenic PI3K-driven pancreatic cancer cell lines, 9580 and 10,158, respectively, were treated with 75 mM DCA for 18 h. In the presence of [U-13C6]glucose, the effects of DCA treatment in the core carbon metabolism were analyzed in these cells using gas chromatography-mass spectrometry (GC/MS). 13C-enrichments and isotopologue profiles of key amino acids revealed considerable effects of the DCA treatment upon glucose metabolism. The DCA treatment of the two pancreatic cell lines resulted in a significantly decreased incorporation of [U-13C6]glucose into the amino acids alanine, aspartate, glutamate, glycine, proline and serine in treated, but not in untreated, cancer cells. For both cell lines, the data indicated some activation of pyruvate dehydrogenase with increased carbon flux via the TCA cycle, but also massive inhibition of glycolytic flux and amino acid biosynthesis presumably by inhibition of the PI3K/Akt/mTORC axis. Together, it appears worthwhile to study the early treatment response in DCA-guided or accompanied cancer therapy in more detail, since it could open new avenues for improved diagnosis and therapeutic protocols of cancer.

8.
Oncogene ; 40(31): 4955-4966, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34172934

RESUMO

A prototypic pediatric cancer that frequently shows activation of RAS signaling is embryonal rhabdomyosarcoma (ERMS). ERMS also show aberrant Hedgehog (HH)/GLI signaling activity and can be driven by germline mutations in this pathway. We show, that in ERMS cell lines derived from sporadic tumors i.e. from tumors not caused by an inherited genetic variant, HH/GLI signaling plays a subordinate role, because oncogenic mutations in HRAS, KRAS, or NRAS (collectively named oncRAS) inhibit the main HH target GLI1 via the MEK/ERK-axis, but simultaneously increase proliferation and tumorigenicity. oncRAS also modulate expression of stem cell markers in an isoform- and context-dependent manner. In Hh-driven murine ERMS that are caused by a Patched mutation, oncHRAS and mainly oncKRAS accelerate tumor development, whereas oncNRAS induces a more differentiated phenotype. These features occur when the oncRAS mutations are induced at the ERMS precursor stage, but not when induced in already established tumors. Moreover, in contrast to what is seen in human cell lines, oncRAS mutations do not alter Hh signaling activity and marginally affect expression of stem cell markers. Together, all three oncRAS mutations seem to be advantageous for ERMS cell lines despite inhibition of HH signaling and isoform-specific modulation of stem cell markers. In contrast, oncRAS mutations do not inhibit Hh-signaling in Hh-driven ERMS. In this model, oncRAS mutations seem to be advantageous for specific ERMS populations that occur within a specific time window during ERMS development. In addition, this window may be different for individual oncRAS isoforms, at least in the mouse.

9.
Am J Surg Pathol ; 45(7): 969-978, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34105518

RESUMO

The 2019 World Health Organization (WHO) classification of colorectal carcinoma (CRC) profoundly reclassified CRC subtypes and introduces tumor budding as a second major grading criterion, while condensing conventional grade into a 2-tiered system. So far it remains largely unexplored how these parameters interact with each other and whether they truly have an independent impact on patient prognosis. We reclassified a large single-center cohort of 1004 CRCs spanning 2 decades for adjusted WHO grade (low vs. high), tumor budding (Bd1/Bd2/Bd3), and CRC subtype (adenocarcinoma not otherwise specified, micropapillary, mucinous, serrated, medullary, adenoma-like, signet-ring cell, mixed adenoneuroendocrine carcinoma/neuroendocrine carcinoma, undifferentiated) according to the criteria of the 2019 WHO classification. We investigated the interaction of these parameters, their connection to stage/microsatellite status, and their significance for patient survival in the different subgroups. Specific subtypes other than adenocarcinoma not otherwise specified represented one third of all CRCs and were unevenly distributed throughout stage and microsatellite subgroups. Subtypes, WHO grade and tumor budding profoundly impacted all survival parameters (P<0.001 for all analyses), with CRC subtypes and tumor budding-but not WHO grade-being stage-independent prognosticators for all survival comparisons. WHO grade had very limited prognostic value in CRC subtypes, while tumor budding retained its strong prognostic impact in most scenarios. Accurate delineation of CRC subtypes introduced in the 2019 WHO classification provides strong stage-independent prognostic information, arguing that they should be considered in pathology reports and in clinical trials. Of the morphology-based grading schemes included in the 2019 WHO, tumor budding outperforms WHO grade.


Assuntos
Carcinoma/patologia , Movimento Celular , Neoplasias Colorretais/patologia , Idoso , Biópsia , Carcinoma/classificação , Carcinoma/mortalidade , Carcinoma/cirurgia , Colectomia , Neoplasias Colorretais/classificação , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/cirurgia , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Instabilidade de Microssatélites , Gradação de Tumores , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Organização Mundial da Saúde
10.
Expert Opin Drug Discov ; 16(9): 991-1007, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34075855

RESUMO

Introduction: Precision medicine is the concept of treating diseases based on environmental factors, lifestyles, and molecular profiles of patients. This approach has been found to increase success rates of clinical trials and accelerate drug approvals. However, current precision medicine applications in early drug discovery use only a handful of molecular biomarkers to make decisions, whilst clinics gear up to capture the full molecular landscape of patients in the near future. This deep multi-omics characterization demands new analysis strategies to identify appropriate treatment regimens, which we envision will be pioneered by artificial intelligence.Areas covered: In this review, the authors discuss the current state of drug discovery in precision medicine and present our vision of how artificial intelligence will impact biomarker discovery and drug design.Expert opinion: Precision medicine is expected to revolutionize modern medicine; however, its traditional form is focusing on a few biomarkers, thus not equipped to leverage the full power of molecular landscapes. For learning how the development of drugs can be tailored to the heterogeneity of patients across their molecular profiles, artificial intelligence algorithms are the next frontier in precision medicine and will enable a fully personalized approach in drug design, and thus ultimately impacting clinical practice.

11.
EMBO Mol Med ; 13(7): e13502, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033220

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Humanos , Macrófagos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/genética
12.
Pancreatology ; 21(5): 912-919, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33824054

RESUMO

BACKGROUND: Oncogenic Kras initiates and drives carcinogenesis in the pancreas by complex signaling networks, including activation of the NFκB pathway. Although recent evidence has shown that oncogenic gains in Nfκb2 collaborate with Kras in the carcinogenesis, no data at the level of genetics for the contribution of Nfκb2 is available so far. METHODS: We used Nfkb2 knock-out mice to decipher the role of the gene in Kras-driven carcinogenesis in vivo. RESULTS: We show that the Nfkb2 gene is needed for cancer initiation and progression in KrasG12D-driven models and this requirement of Nfkb2 is mechanistically connected to proliferative pathways. In contrast, Nfκb2 is dispensable in aggressive pancreatic ductal adenocarcinoma (PDAC) models relying on the simultaneous expression of the Kras oncogene and the mutated tumor suppressor p53. CONCLUSIONS: Our data add to the understanding of context-dependent requirements of oncogenic Kras signaling during pancreatic carcinogenesis.

13.
Gut ; 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846140

RESUMO

OBJECTIVE: Molecular taxonomy of tumours is the foundation of personalised medicine and is becoming of paramount importance for therapeutic purposes. Four transcriptomics-based classification systems of pancreatic ductal adenocarcinoma (PDAC) exist, which consistently identified a subtype of highly aggressive PDACs with basal-like features, including ΔNp63 expression and loss of the epithelial master regulator GATA6. We investigated the precise molecular events driving PDAC progression and the emergence of the basal programme. DESIGN: We combined the analysis of patient-derived transcriptomics datasets and tissue samples with mechanistic experiments using a novel dual-recombinase mouse model for Gata6 deletion at late stages of KRasG12D-driven pancreatic tumorigenesis (Gata6LateKO). RESULTS: This comprehensive human-to-mouse approach showed that GATA6 loss is necessary, but not sufficient, for the expression of ΔNp63 and the basal programme in patients and in mice. The concomitant loss of HNF1A and HNF4A, likely through epigenetic silencing, is required for the full phenotype switch. Moreover, Gata6 deletion in mice dramatically increased the metastatic rate, with a propensity for lung metastases. Through RNA-Seq analysis of primary cells isolated from mouse tumours, we show that Gata6 inhibits tumour cell plasticity and immune evasion, consistent with patient-derived data, suggesting that GATA6 works as a barrier for acquiring the fully developed basal and metastatic phenotype. CONCLUSIONS: Our work provides both a mechanistic molecular link between the basal phenotype and metastasis and a valuable preclinical tool to investigate the most aggressive subtype of PDAC. These data, therefore, are important for understanding the pathobiological features underlying the heterogeneity of pancreatic cancer in both mice and human.

14.
Neuro Oncol ; 23(11): 1898-1910, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33864076

RESUMO

BACKGROUND: The transcription factor NF-κB drives neoplastic progression of many cancers including primary brain tumors (glioblastoma [GBM]). Precise therapeutic modulation of NF-κB activity can suppress central oncogenic signaling pathways in GBM, but clinically applicable compounds to achieve this goal have remained elusive. METHODS: In a pharmacogenomics study with a panel of transgenic glioma cells, we observed that NF-κB can be converted into a tumor suppressor by the non-psychotropic cannabinoid cannabidiol (CBD). Subsequently, we investigated the anti-tumor effects of CBD, which is used as an anticonvulsive drug (Epidiolex) in pediatric neurology, in a larger set of human primary GBM stem-like cells (hGSC). For this study, we performed pharmacological assays, gene expression profiling, biochemical, and cell-biological experiments. We validated our findings using orthotopic in vivo models and bioinformatics analysis of human GBM datasets. RESULTS: We found that CBD promotes DNA binding of the NF-κB subunit RELA and simultaneously prevents RELA phosphorylation on serine-311, a key residue that permits genetic transactivation. Strikingly, sustained DNA binding by RELA-lacking phospho-serine 311 was found to mediate hGSC cytotoxicity. Widespread sensitivity to CBD was observed in a cohort of hGSC defined by low levels of reactive oxygen species (ROS), while high ROS content in other tumors blocked CBD-induced hGSC death. Consequently, ROS levels served as a predictive biomarker for CBD-sensitive tumors. CONCLUSIONS: This evidence demonstrates how a clinically approved drug can convert NF-κB into a tumor suppressor and suggests a promising repurposing option for GBM therapy.


Assuntos
Canabidiol , Glioblastoma , Proteínas Supressoras de Tumor , Antioxidantes , Apoptose , Canabidiol/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , NF-kappa B/metabolismo , Fator de Transcrição RelA
15.
BMC Dev Biol ; 21(1): 4, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33517884

RESUMO

BACKGROUND: Our previous study have shown that the PSMD11 protein was an important survival factor for cancer cells except for its key role in regulation of assembly and activity of the 26S proteasome. To further investigate the role of PSMD11 in carcinogenesis, we constructed a conditional exon 5 floxed allele of PSMD11 (PSMD11flx) in mice. RESULTS: It was found that homozygous PSMD11 flx/flx mice showed normal and exhibited a normal life span and fertility, and showed roughly equivalent expression of PSMD11 in various tissues, suggesting that the floxed allele maintained the wild-type function. Cre recombinase could induce efficient knockout of the floxed PSMD11 allele both in vitro and in vivo. Mice with constitutive single allele deletion of PSMD11 derived from intercrossing between PSMD11flx/flx and CMV-Cre mice were all viable and fertile, and showed apparent growth retardation, suggesting that PSMD11 played a significant role in the development of mice pre- or postnatally. No whole-body PSMD11 deficient embryos (PSMD11-/-) were identified in E7.5-8.5 embryos in uteros, indicating that double allele knockout of PSMD11 leads to early embryonic lethality. To avoid embryonic lethality produced by whole-body PSMD11 deletion, we further developed conditional PSMD11 global knockout mice with genotype Flp;FSF-R26CAG - CreERT2/+; PSMD11 flx/flx, and demonstrated that PSMD11 could be depleted in a temporal and tissue-specific manner. Meanwhile, it was found that depletion of PSMD11 could induce massive apoptosis in MEFs. CONCLUSIONS: In summary, our data demonstrated that we have successfully generated a conditional knockout allele of PSMD11 in mice, and found that PSMD11 played a key role in early and postnatal development in mice, the PSMD11 flx/flx mice will be an invaluable tool to explore the functions of PSMD11 in development and diseases.

16.
Oncogene ; 40(10): 1896-1908, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33603167

RESUMO

Recent years have seen an increasing number of genetically engineered pig models of human diseases including cancer. We previously generated pigs with a modified TP53 allele that carries a Cre-removable transcriptional stop signal in intron 1, and an oncogenic mutation TP53R167H (orthologous to human TP53R175H) in exon 5. Pigs with the unrecombined mutant allele (flTP53R167H) develop mainly osteosarcoma but also nephroblastomas and lymphomas. This observation suggested that TP53 gene dysfunction is itself the key initiator of bone tumorigenesis, but raises the question which aspects of the TP53 regulation lead to the development of such a narrow tumour spectrum. Molecular analysis of p53 revealed the presence of two internal TP53 promoters (Pint and P2) equivalent to those found in human. Consequently, both pig and human express TP53 isoforms. Data presented here strongly suggest that P2-driven expression of the mutant R167H-Δ152p53 isoform (equivalent to the human R175H-Δ160p53 isoform) and its circular counterpart circTP53 determine the tumour spectrum and play a critical role in the malignant transformation in flTP53R167H pigs. The detection of Δ152p53 isoform mRNA in serum is indicative of tumorigenesis. Furthermore, we showed a tissue-specific p53-dependent deregulation of the p63 and p73 isoforms in these tumours. This study highlights important species-specific differences in the transcriptional regulation of TP53. Considering the similarities of TP53 regulation between pig and human, these observations provide useful pointers for further investigation into isoform function including the novel circTP53 in both the pig model and human patients.


Assuntos
Carcinogênese/genética , Neoplasias/genética , RNA Circular/genética , Proteína Supressora de Tumor p53/genética , Alelos , Animais , Modelos Animais de Doenças , Éxons/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Íntrons/genética , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Suínos/genética
17.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443161

RESUMO

Fluorescence imaging is currently being actively developed for surgical guidance; however, it remains underutilized for diagnostic and endoscopic surveillance of incipient colorectal cancer in high-risk patients. Here we demonstrate the utility and potential for clinical translation of a fluorescently labeled cathepsin-activated chemical probe to highlight gastrointestinal lesions. This probe stays optically dark until it is activated by proteases produced by tumor-associated macrophages and accumulates within the lesions, enabling their detection using an endoscope outfitted with a fluorescence detector. We evaluated the probe in multiple murine models and a human-scale porcine model of gastrointestinal carcinogenesis. The probe provides fluorescence-guided surveillance of gastrointestinal lesions and augments histopathological analysis by highlighting areas of dysplasia as small as 400 µm, which were visibly discernible with significant tumor-to-background ratios, even in tissues with a background of severe inflammation and ulceration. Given these results, we anticipate that this probe will enable sensitive fluorescence-guided biopsies, even in the presence of highly inflamed colorectal tissue, which will improve early diagnosis to prevent gastrointestinal cancers.


Assuntos
Detecção Precoce de Câncer/métodos , Endoscopia/métodos , Lesões Pré-Cancerosas/diagnóstico , Animais , Colo/patologia , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Feminino , Fluorescência , Corantes Fluorescentes , Neoplasias Gastrointestinais/patologia , Trato Gastrointestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Lesões Pré-Cancerosas/patologia , Ratos , Ratos Endogâmicos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/prevenção & controle , Suínos
18.
Elife ; 102021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393460

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of 'cancer stem cells (CSCs)' in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC, and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.


Assuntos
Adenocarcinoma/fisiopatologia , Carcinoma Ductal Pancreático/fisiopatologia , Linhagem da Célula/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/fisiopatologia , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Humanos , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/patologia
19.
J Cell Physiol ; 236(8): 5937-5952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33452672

RESUMO

A persistent basal tone in the internal anal sphincter (IAS) is essential for keeping the anal canal closed and fecal continence; its inhibition via the rectoanal inhibitory reflex (RAIR) is required for successful defecation. However, cellular signals underlying the IAS basal tone remain enigmatic. Here we report the origin and molecular mechanisms of calcium signals that control the IAS basal tone, using a combination approach including a novel IAS slice preparation that retains cell arrangement and architecture as in vivo, 2-photon imaging, and cell-specific gene-modified mice. We found that IAS smooth muscle cells generate two forms of contractions (i.e., phasic and sustained contraction) and Ca2+ signals (i.e., synchronized Ca2+ oscillations [SCaOs] and asynchronized Ca2+ oscillations [ACaOs]) that last for hours. RyRs, TMEM16A, L-type Ca2+ channels, and gap junctions are required for SCaOs, which account for phasic contraction and 75% of sustained contraction. Nevertheless, only RyRs are required for ACaOs, which contribute 25% of sustained contraction. Nitric oxide, the primary neurotransmitter mediating the RAIR, blocks both types of Ca2+ signals, leading to IAS's full relaxation. Our results show that the oscillating nature of Ca2+ signals generates and maintains the basal tone without causing cytotoxicity to IAS. Our study provides insight into fecal continence and normal defecation.


Assuntos
Canal Anal/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Camundongos , Contração Muscular/fisiologia , Óxido Nítrico/metabolismo , Reflexo/fisiologia
20.
Gastroenterology ; 160(1): 346-361.e24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007300

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibroblast-rich desmoplastic stroma. Cancer-associated fibroblasts (CAFs) have been shown to display a high degree of interconvertible states including quiescent, inflammatory, and myofibroblastic phenotypes; however, the mechanisms by which this plasticity is achieved are poorly understood. Here, we aim to elucidate the role of CAF plasticity and its impact on PDAC biology. METHODS: To investigate the role of mesenchymal plasticity in PDAC progression, we generated a PDAC mouse model in which CAF plasticity is modulated by genetic depletion of the transcription factor Prrx1. Primary pancreatic fibroblasts from this mouse model were further characterized by functional in vitro assays. To characterize the impact of CAFs on tumor differentiation and response to chemotherapy, various coculture experiments were performed. In vivo, tumors were characterized by morphology, extracellular matrix composition, and tumor dissemination and metastasis. RESULTS: Our in vivo findings showed that Prrx1-deficient CAFs remain constitutively activated. Importantly, this CAF phenotype determines tumor differentiation and disrupts systemic tumor dissemination. Mechanistically, coculture experiments of tumor organoids and CAFs showed that CAFs shape the epithelial-to-mesenchymal phenotype and confer gemcitabine resistance of PDAC cells induced by CAF-derived hepatocyte growth factor. Furthermore, gene expression analysis showed that patients with pancreatic cancer with high stromal expression of Prrx1 display the squamous, most aggressive, subtype of PDAC. CONCLUSIONS: Here, we define that the Prrx1 transcription factor is critical for tuning CAF activation, allowing a dynamic switch between a dormant and an activated state. This work shows that Prrx1-mediated CAF plasticity has significant impact on PDAC biology and therapeutic resistance.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/patologia , Proteínas de Homeodomínio/fisiologia , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/patologia , Animais , Plasticidade Celular/fisiologia , Modelos Animais de Doenças , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...