Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 311: 106685, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31981782

RESUMO

We propose an approach for improving the homogeneity of microwave magnetic field amplitude in a dielectric tube resonator for electron paramagnetic resonance spectroscopy at X-band. The improvement is achieved by "shaping" (controllable variation of the outer diameter of a dielectric insert along its axial direction). Various shaping scenarios based on the principle of discrete solenoids and electromagnetic calculations have been considered. The dielectric insert having the most promising shape was manufactured from a bismuth germanate single crystal. The shaped insert increases the area at B1 > 0.9 B1max from 5.06 to 7.36 mm. Higher sensitivity and lower likelihood of quantitative errors have been achieved in pulse EPR experiments for "long" samples (whose length was comparable to that of the dielectric insert) in a shaped dielectric insert.

2.
Phys Chem Chem Phys ; 21(16): 8228-8245, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30920556

RESUMO

The relaxation-induced dipolar modulation enhancement (RIDME) technique allows the determination of distances and distance distributions in pairs containing two paramagnetic metal centers, a paramagnetic metal center and an organic radical, and, under some conditions, also in pairs of organic radicals. The strengths of the RIDME technique are its simple setup requirements, and the absence of bandwidth limitations for spin inversion which occurs through relaxation. A strong limitation of the RIDME technique is the background decay, which is often steeper than that in the double electron electron resonance experiment, and the absence of an appropriate description of the intermolecular background signal. Here we address the latter problem and present an analytical calculation of the RIDME background decay in the simple case of two types of randomly distributed spin centers each with total spin S = 1/2. The obtained equations allow the explaination of the key trends in RIDME experiments on frozen chelated metal ion solutions, and singly spin-labeled proteins. At low spin label concentrations, the RIDME background shape is determined by nuclear-driven spectral diffusion processes. This fact opens up a new path for structural characterization of soft matter and biomacromolecules through the determination of the local distribution of protons in the vicinity of the spin-labeled site.

3.
J Am Chem Soc ; 140(51): 18082-18092, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30453734

RESUMO

By a combination of electron paramagnetic resonance spectroscopy, finite-temperature ab initio simulations, and electronic structure analyses, the activation of molecular dioxygen at the interface of gold nanoparticles and titania in Au/TiO2 catalysts is explained at the atomic scale by tracing processes down to the molecular orbital picture. Direct evidence is provided that excess electrons in TiO2, for example created by photoexcitation of the semiconductor, migrate to the gold particles and from there to oxygen molecules adsorbed at gold/titania perimeter sites. Superoxide species are formed more efficiently in this way than on the bare TiO2 surface. This catalytic effect of the gold nanoparticles is attributed to a weakening of the internal O-O bond, leading to a preferential splitting of the molecule at shorter bond lengths together with a 70% decrease of the dissociation free energy barrier compared to the non-catalyzed case on bare TiO2. The findings are an important step forward in the clarification of the role of gold in (photo)catalytic processes.

4.
J Phys Chem A ; 122(45): 8931-8937, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30359039

RESUMO

Previously unknown the steric heavy atom effect on magnetic anisotropy parameters of triplet phenyl nitrenes is reported. The heavy bromine atom effect is revealed by W-band EPR and theoretical investigations of triplet 2,4,6-tribromophenyl nitrenes bearing different substituents in positions 3 and 5 of the phenyl ring (1a, H/H; 1b, CN/CN; 1c, N3/F; 1d, N3/N3; 1e, Cl/Cl; 1f, Br/Br). The zero-field splitting parameters of nitrenes 1a ( D = 0.9930 cm-1, E = 0.0261 cm-1), 1c ( D = 1.244 cm-1, E = 0.030 cm-1), and 1d ( D = 1.369 cm-1, E = 0.093 cm-1), generated by the photolysis of the corresponding azides in frozen methylcyclohexane solution at 5 K, were determined from the W-band EPR spectra. To clarify the origin of considerable differences in the experimental D values of nitrenes 1a, 1c, and 1d, extensive DFT and CASSCF calculations of these nitrenes as well as of model nitrenes 1b, 1e, and 1f were performed. The calculations show that all nitrenes have nearly the same magnitudes of the spin-spin interactions ( DSS ∼ 1 cm-1), but drastically differ in the spin-orbit coupling parameter (from DSOC = 0.087 cm-1 for 1a to DSOC = 0.765 cm-1 for 1f). Comprehensive analysis of various computational data showed that the magnitude of DSOC of nitrenes 1a-f is the function of the N···Br distance between the nitrene nitrogen and the neighboring bromine atoms. The more bulky substituents are located in positions 3 and 5 of nitrenes 1a-1f, the smaller the N--Br distance and the larger DSOC. These features indicate that the heavy atom effect on magnetic anisotropy of triplet phenyl nitrenes originates from the through-space rather than through-bond electronic interactions between the bromine atoms and the nitrene unit.

5.
J Org Chem ; 83(15): 7586-7592, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30019897

RESUMO

The interaction of cyclopentadienylidene and tetrachlorocyclopentadienylidene with the halogen bond donor CF3I has been studied by matrix isolation spectroscopy. The carbenes were produced by photolysis of the corresponding diazo compounds, matrix-isolated in argon doped with 1% CF3I at 3 K. Bimolecular reactions between the carbenes and CF3I were induced by annealing these matrices to 25-30 K to allow for the diffusion of trapped species. Instead of classical halogen-bonded complexes, these carbenes form complexes in which the iodine atom is shared between the carbene center and the CF3 group. Photolysis of the complexes at 3 K yields radical pairs, which reversibly react back to the complexes when the matrices are warmed to 25-30 K.

6.
Biochem Pharmacol ; 149: 163-173, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29409925

RESUMO

In addition to their role as oxygen transporters, red blood cells (RBCs) contribute to cardiovascular homeostasis by regulating nitric oxide (NO) metabolism via interaction of hemoglobin (Hb) with nitrite and NO itself. RBCs were proposed to also participate in sulfide metabolism. Although Hb is known to react with sulfide, sulfide metabolism by intact RBCs has not been characterized so far. Therefore we explored the role of Hb in sulfide metabolism in intact human RBCs. We find that upon exposure of washed RBCs to sulfide, no changes in oxy/deoxyhemoglobin (oxy/deoxyHb) are observed by UV-vis and EPR spectroscopy. However, sulfide reacts with methemoglobin (metHb), forming a methemoglobin-sulfide (metHb-SH) complex. Moreover, while metHb-SH is stable in cell-free systems even in the presence of biologically relevant thiols, it gradually decomposes to produce oxyHb, inorganic polysulfides and thiosulfate in intact cells, as detected by EPR and mass spectrometry. Taken together, our results demonstrate that under physiological conditions RBCs are able to metabolize sulfide via intermediate formation of a metHb-SH complex, which subsequently decomposes to oxyHb. We speculate that decomposition of metHb-SH is preceded by an inner-sphere electron transfer, forming reduced Hb (which binds oxygen to form oxyHb) and thiyl radical (a process we here define as "reductive sulfhydration"), which upon release, gives rise to the oxidized products, thiosulfate and polysulfides. Thus, not only is metHb an efficient scavenger and regulator of sulfide in blood, intracellular sulfide itself may play a role in keeping Hb in the reduced oxygen-binding form and, therefore, be involved in RBC physiology and function.


Assuntos
Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Sulfeto de Hidrogênio/metabolismo , Células Cultivadas , Humanos , Metemoglobina/metabolismo , Tiossulfatos/metabolismo
7.
Chem Commun (Camb) ; 54(28): 3436-3439, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29424850

RESUMO

The first synthesized and X-ray structurally characterized "classical" iron(i) dioximate showed an unrivaled stability towards strong acids, thus calling for a reassessment of the origins of the electrocatalytic activity of similar low-valent cobalt and iron cage complexes with electron-withdrawing ribbed substituents, shown previously to be effective electrocatalysts of the HER.

8.
Chemistry ; 24(6): 1431-1440, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29251363

RESUMO

Semiquinones (SQ) are generated in photosynthetic organisms upon photoinduced electron transfer to quinones (Q). They are stabilized by hydrogen bonding (HB) with the neighboring residues, which alters the properties of the reaction center. We designed, synthesized, and investigated resorcin[4]arene cavitands inspired by this function of SQ in natural photosynthesis. Cavitands were equipped with alternating quinone and quinoxaline walls bearing hydrogen bond donor groups (HBD). Different HBD were analyzed that mimic natural amino acids, such as imidazole and indole, along with their analogues, pyrrole and pyrazole. Pyrroles were identified as the most promising candidates that enabled the cavitands to remain open in the Q state until strengthening of HB upon reduction to the paramagnetic SQ radical anion provided stabilization of the closed form. The SQ state was generated electrochemically and photochemically, whereas properties were studied by UV/Vis spectroelectrochemistry, transient absorption, and EPR spectroscopy. This study demonstrates a photoredox-controlled conformational switch towards a new generation of molecular grippers.

9.
Angew Chem Int Ed Engl ; 57(1): 277-281, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29119650

RESUMO

The endohedral fullerene Y3 N@C80 exhibits luminescence with reasonable quantum yield and extraordinary long lifetime. By variable-temperature steady-state and time-resolved luminescence spectroscopy, it is demonstrated that above 60 K the Y3 N@C80 exhibits thermally activated delayed fluorescence with maximum emission at 120 K and a negligible prompt fluorescence. Below 60 K, a phosphorescence with a lifetime of 192±1 ms is observed. Spin distribution and dynamics in the triplet excited state is investigated with X- and W-band EPR and ENDOR spectroscopies and DFT computations. Finally, electroluminescence of the Y3 N@C80 /PFO film is demonstrated opening the possibility for red-emitting fullerene-based organic light-emitting diodes (OLEDs).

10.
Appl Magn Reson ; 48(11): 1149-1183, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151676

RESUMO

In this minireview, we report on our year-long EPR work, such as electron-nuclear double resonance (ENDOR), pulse electron double resonance (PELDOR) and ELDOR-detected NMR (EDNMR) at X-band and W-band microwave frequencies and magnetic fields. This report is dedicated to James S. Hyde and honors his pioneering contributions to the measurement of spin interactions in large (bio)molecules. From these interactions, detailed information is revealed on structure and dynamics of macromolecules embedded in liquid-solution or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultra-fast electronics for signal data handling and processing have pushed the limits of EPR spectroscopy and its multi-frequency extensions to new horizons concerning sensitivity of detection, selectivity of molecular interactions and time resolution. Among the most important advances is the upgrading of EPR to high magnetic fields, very much in analogy to what happened in NMR. The ongoing progress in EPR spectroscopy is exemplified by reviewing various multi-frequency electron-nuclear double-resonance experiments on organic radicals, light-generated donor-acceptor radical pairs in photosynthesis, and site-specifically nitroxide spin-labeled bacteriorhodopsin, the light-driven proton pump, as well as EDNMR and ENDOR on nitroxides. Signal and resolution enhancements are particularly spectacular for ENDOR, EDNMR and PELDOR on frozen-solution samples at high Zeeman fields. They provide orientation selection for disordered samples approaching single-crystal resolution at canonical g-tensor orientations-even for molecules with small g-anisotropies. Dramatic improvements of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Thus, unique structural and dynamic information is revealed that can hardly be obtained by other analytical techniques. Micromolar concentrations of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems-offering exciting applications for physicists, chemists, biochemists and molecular biologists.

11.
Sci Rep ; 7(1): 13346, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042655

RESUMO

Blue-light absorption by the flavin chromophore in light, oxygen, voltage (LOV) photoreceptors triggers photochemical reactions that lead to the formation of a flavin-cysteine adduct. While it has long been assumed that adduct formation is essential for signaling, it was recently shown that LOV photoreceptor variants devoid of the photoactive cysteine can elicit a functional response and that flavin photoreduction to the neutral semiquinone radical is sufficient for signal transduction. Currently, the mechanistic basis of the underlying electron- (eT) and proton-transfer (pT) reactions is not well understood. We here reengineered pT into the naturally not photoreducible iLOV protein, a fluorescent reporter protein derived from the Arabidopsis thaliana phototropin-2 LOV2 domain. A single amino-acid substitution (Q489D) enabled efficient photoreduction, suggesting that an eT pathway is naturally present in the protein. By using a combination of site-directed mutagenesis, steady-state UV/Vis, transient absorption and electron paramagnetic resonance spectroscopy, we investigate the underlying eT and pT reactions. Our study provides strong evidence that several Tyr and Trp residues, highly conserved in all LOV proteins, constitute the eT pathway for flavin photoreduction, suggesting that the propensity for photoreduction is evolutionary imprinted in all LOV domains, while efficient pT is needed to stabilize the neutral semiquinone radical.


Assuntos
Cisteína/metabolismo , Transporte de Elétrons , Células Fotorreceptoras/metabolismo , Proteínas/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Genes Reporter , Concentração de Íons de Hidrogênio , Luz , Oxigênio/metabolismo , Processos Fotoquímicos , Células Fotorreceptoras/efeitos da radiação , Proteínas/química , Proteínas/genética , Proteínas Recombinantes de Fusão , Análise Espectral
12.
Phys Chem Chem Phys ; 19(41): 28388-28400, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29034914

RESUMO

Using isotope labeled water (D2O and H217O) and pulsed W-band (94 GHz) high-field multiresonance EPR spectroscopies, such as ELDOR-detected NMR and ENDOR, the biologically important question of detection and quantification of local water in proteins is addressed. A bacterial reaction center (bRC) from Rhodobacter sphaeroides R26 embedded into a trehalose glass matrix is used as a model system. The bRC hosts the two native radical cofactor ions (primary electron donor) and (primary electron acceptor) as well as an artificial nitroxide spin label site-specifically attached to the surface of the H-protein domain. The three paramagnetic reporter groups have distinctly different local environments. They serve as local probes to detect water molecules via magnetic interactions (electron-nuclear hyperfine and quadrupole) with either deuterons or 17O nuclei. bRCs were equilibrated in an atmosphere of different relative humidities allowing us to control precisely the hydration levels of the protein. We show that by using oxygen-17 labeled water quantitative conclusions can be made in contrast to using D2O which suffers from proton-deuterium exchange processes in the protein. From the experiments we also conclude that dry trehalose operates as an anhydrobiotic protein stabilizer in line with the "anchorage hypothesis" of bio-protection. It predicts selective changes in the first solvation shell of the protein upon trehalose-matrix dehydration with subsequent changes in the hydrogen-bonding network. Changes in hydrogen-bonding patterns usually have an impact on the global function of a biological system.

13.
J Magn Reson ; 280: 63-78, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28579103

RESUMO

ELDOR-detected NMR (EDNMR) performed at higher magnetic fields is becoming an increasingly popular alternative to conventional ENDOR for the characterization of electron-nuclear hyperfine interactions owing to its enhanced sensitivity. However there are two key problems that limit its widespread adoption, with factors controlling: (i) lineshape distortions and; (ii) overall spectral resolution, still largely understood only at a qualitative level. Indeed highly anisotropic (dipolar) coupled species are particularly problematic in the EDNMR experiment. Nor is it clear as to whether line intensities measured in EDNMR can provide quantitative information. Here we describe how all these problems can be overcome for a nitroxide radical as model system. We introduce a simulation procedure/protocol for the simulation of EDNMR line-shapes collected over a range of high turning angle (HTA) pulse lengths. It is shown that spectral line-shapes can be robustly reproduced and that the intensities of spectral lines and the spin nutation behavior can be quantitatively assessed. This broadens the scope of the EDNMR experiment as a generally applicable, quantitative double resonance method.

14.
Phys Chem Chem Phys ; 19(27): 17856-17876, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28660955

RESUMO

Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies. As previously proposed, we account for these overtones by using a modified kernel function in Tikhonov regularization analysis. This paper analyzes the performance of such an approach on a series of model compounds with the Gd(iii)-PyMTA complex serving as paramagnetic high-spin label. We describe the calibration of the overtone coefficients for the RIDME kernel, demonstrate the accuracy of distance distributions obtained with this approach, and show that for our series of Gd-rulers RIDME technique provides more accurate distance distributions than Gd(iii)-Gd(iii) double electron-electron resonance (DEER). The analysis of RIDME data including harmonic overtones can be performed using the MATLAB-based program OvertoneAnalysis, which is available as open-source software from the web page of ETH Zurich. This approach opens a perspective for the routine use of the RIDME technique with high-spin labels in structural biology and structural studies of other soft matter.

15.
J Phys Chem Lett ; 7(23): 4871-4877, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27934049

RESUMO

Disaccharide glasses are increasingly used to immobilize proteins at room temperature for structural/functional studies and long-term preservation. To unravel the molecular basis of protein immobilization, we studied the effect of sugar/protein concentration ratios in trehalose or sucrose matrixes, in which the bacterial photosynthetic reaction center (RC) was embedded as a model protein. The structural, dynamical, and H-bonding characteristics of the sugar-protein systems were probed by high-field W-band EPR of a matrix-dissolved nitroxide radical. We discovered that RC immobilization and thermal stabilization, being independent of the protein concentration in trehalose, occur in sucrose only at sufficiently low sugar/protein ratios. EPR reveals that only under such conditions does sucrose form a microscopically homogeneous matrix that immobilizes, via H-bonds, the nitroxide probe. We conclude that the protein immobilization capability depends critically on the propensity of the glass-forming sugar to create intermolecular H-bond networks, thus establishing long-range, homogeneous connectivity within the matrix.


Assuntos
Proteínas/química , Sacarose/química , Açúcares/química , Trealose/química
16.
Phys Chem Chem Phys ; 18(36): 25120-25135, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711532

RESUMO

The four Mn(ii) complexes Mn-DOTA, Mn-TAHA, Mn-PyMTA, and Mn-NO3Py were characterized by electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and relaxation measurements, to predict their relative performance in the EPR pulse dipolar spectroscopy (PDS) experiments. High spin density localization on the metal ions was proven by ENDOR on 1H, D, 14N, and 55Mn nuclei. The transverse relaxation of the Mn(ii) complexes appears to be slow enough for PDS-based spin-spin distance determination. Rather advantageous ratios of T1/Tm were measured allowing for good relaxation induced dipolar modulation enhancement (RIDME) performance and, in general, fast shot repetitions in any PDS experiment. Relaxation properties of the Mn(ii) complexes correlate with the strengths of their zero field splitting (ZFS). Further, a comparison of Mn(ii)-DOTA and Gd(iii)-DOTA based spin labels is presented. The RIDME technique to measure nanometer-range Mn(ii)-Mn(ii) distances in biomolecules is discussed as an alternative to the well-known DEER technique that often appears challenging in cases of metal-metal distance measurements. The use of a modified kernel function that includes dipolar harmonic overtones allows model-free computation of the Mn(ii)-Mn(ii) distance distributions. Mn(ii)-Mn(ii) distances are computed from RIDME data of Mn-rulers consisting of two Mn-PyMTA complexes connected by a rodlike spacer of defined length. Level crossing effects seem to have only a weak influence on the distance distributions computed from this set of Mn(ii)-Mn(ii) RIDME data.

17.
J Phys Chem Lett ; 7(13): 2470-7, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27300355

RESUMO

The development of semiquinone-based resorcin[4]arene cavitands expands the toolbox of switchable molecular grippers by introducing the first paramagnetic representatives. The semiquinone (SQ) states were generated electrochemically, chemically, and photochemically. We analyzed their electronic, conformational, and binding properties by cyclic voltammetry, ultraviolet/visible (UV/vis) spectroelectrochemistry, electron paramagnetic resonance (EPR) and transient absorption spectroscopy, in conjunction with density functional theory (DFT) calculations. The utility of UV/vis spectroelectrochemistry and EPR spectroscopy in evaluating the conformational features of resorcin[4]arene cavitands is demonstrated. Guest binding properties were found to be enhanced in the SQ state as compared to the quinone (Q) or the hydroquinone (HQ) states of the cavitands. Thus, these paramagnetic SQ intermediates open the way to six-state redox switches provided by two conformations (open and closed) in three redox states (Q, SQ, and HQ) possessing distinct binding ability. The switchable magnetic properties of these molecular grippers and their responsiveness to electrical stimuli has the potential for development of efficient molecular devices.

19.
J Am Chem Soc ; 138(5): 1622-9, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26771052

RESUMO

Bis(p-methoxyphenyl)carbene is the first carbene that at cryogenic temperatures can be isolated in both its lowest energy singlet and triplet states. At 3 K, both states coexist indefinitely under these conditions. The carbene is investigated in argon matrices by IR, UV-vis, and X-band EPR spectroscopy and in MTHF glasses by W-band EPR and Q-band ENDOR spectroscopy. UV (365 nm) irradiation of the system results in formation of predominantly the triplet carbene, whereas visible (450 nm) light shifts the photostationary equilibrium toward the singlet state. Upon annealing at higher temperatures (>10 K), the triplet is converted to the singlet; however, cooling back to 3 K does not restore the triplet. Therefore, depending on matrix temperature and irradiation conditions, matrices containing predominantly the triplet or singlet carbene can be generated. Controlling the magnetic and chemical properties of carbenes by using light of different wavelengths might be of general interest for applications such as information storage and radical-initiated polymerization processes.

20.
Methods Enzymol ; 563: 211-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26478487

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Teóricos , Marcadores de Spin , Elétrons , Metaloproteínas/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA