RESUMO
Li- and Mn-rich layered oxides (Li1.2Ni0.2Mn0.6O2) are actively pursued as high energy and sustainable alternatives to the current Li-ion battery cathodes that contain Co. However, the severe decay in discharge voltage observed in these cathodes needs to be addressed before they can find commercial applications. A few mechanisms differing in origin have been proposed to explain the voltage fade, which may be caused by differences in material composition, morphology and electrochemical testing protocols. Here, these challenges are addressed by synthesising Li1.2Ni0.2Mn0.6O2 using three different hydrothermal and solid-state approaches and studying their degradation using the same cell design and cycling protocols. The voltage fade is found to be similar under the same electrochemical testing protocols, regardless of the synthesis method. X-ray absorption near edge, extended X-ray absorption fine structure spectroscopies, and energy loss spectroscopy in a scanning transmission electron microscope indicate only minor changes in the bulk Mn oxidation state but reveal a much more reduced particle surface upon extended cycling. No spinel phase is seen via the bulk structural characterisation methods of synchrotron X-ray diffraction, 7Li magic angle spinning solid state nuclear magnetic resonance and Raman spectroscopy. Thus, the voltage fade is believed to largely result from a heavily reduced particle surface. This hypothesis is further confirmed by galvanostatic intermittent titration technique analysis, which indicates that only very small shifts in equilibrium potential take place, in contrast to the overpotential which builds up after cycling. This suggests that a major source of the voltage decay is kinetic in origin, resulting from a heavily reduced particle surface with slow Li transport.
RESUMO
The structure of a new ZIF-8 polymorph with quartz topology (qtz) is reported. This qtz-[Zn(mIm)2] phase was obtained by mechanically amorphising crystalline ZIF-8, before heating the resultant amorphous phase to between 282 and 316 °C. The high-temperature phase structure was obtained from powder X-ray diffraction, and its thermal behaviour, CO2 gas sorption properties and dye adsorption ability were investigated.
RESUMO
All-solid-state batteries based on non-combustible solid electrolytes are promising candidates for safe energy storage systems. In addition, they offer the opportunity to utilize metallic lithium as an anode. However, it has proven to be a challenge to design an electrolyte that combines high ionic conductivity and processability with thermodynamic stability toward lithium. Herein, we report a new highly conducting solid solution that offers a route to overcome these challenges. The Li-P-S ternary was first explored via a combination of high-throughput crystal structure predictions and solid-state synthesis (via ball milling) of the most promising compositions, specifically, phases within the Li3P-Li2S tie line. We systematically characterized the structural properties and Li-ion mobility of the resulting materials by X-ray and neutron diffraction, solid-state nuclear magnetic resonance spectroscopy (relaxometry), and electrochemical impedance spectroscopy. A Li3P-Li2S metastable solid solution was identified, with the phases adopting the fluorite (Li2S) structure with P substituting for S and the extra Li+ ions occupying the octahedral voids and contributing to the ionic transport. The analysis of the experimental data is supported by extensive quantum-chemical calculations of both structural stability, diffusivity, and activation barriers for Li+ transport. The new solid electrolytes show Li-ion conductivities in the range of established materials, while their composition guarantees thermodynamic stability toward lithium metal anodes.
RESUMO
Coherent nonlinear spectroscopies and imaging in the X-ray domain provide direct insight into the coupled motions of electrons and nuclei with resolution on the electronic length scale and timescale. The experimental realization of such techniques will strongly benefit from access to intense, coherent pairs of femtosecond X-ray pulses. We have observed phase-stable X-ray pulse pairs containing more than 3 × 107 photons at 5.9 keV (2.1 Å) with â¼1 fs duration and 2 to 5 fs separation. The highly directional pulse pairs are manifested by interference fringes in the superfluorescent and seeded stimulated manganese Kα emission induced by an X-ray free-electron laser. The fringes constitute the time-frequency X-ray analog of Young's double-slit interference, allowing for frequency domain X-ray measurements with attosecond time resolution.
RESUMO
In the evaluation of compatibility of different components of cell for high-energy and extreme-conditions applications, the highly focused are positive and negative electrodes and their interaction with electrolyte. However, for high-temperature application, the other components are also of significant influence and contribute toward the total health of battery. In present study, we have investigated the behavior of aluminum, the most common current collector for positive electrode materials for its electrochemical and temperature stability. For electrochemical stability, different electrolytes, organic and room temperature ionic liquids with varying Li salts (LiTFSI, LiFSI), are investigated. The combination of electrochemical and spectroscopic investigations reflects the varying mechanism of passivation at room and high temperature, as different compositions of decomposed complexes are found at the surface of metals.
RESUMO
A new series of Pr1-xCexScO3 (0.0 ≤x≤ 1.0) compounds was synthesized by a two-step synthesis route, involving a combustion reaction followed by reduction while heating in a low partial pressure of O2, generated by a zirconium sponge that acts as an oxygen getter. For the first time, perovskite solid solution formation was observed in this series in the entire homogeneity range. These compounds were characterized using XRD, Raman spectroscopy and DRUV-visible spectroscopy. Rietveld refinement was carried out on the XRD data to determine unit cell parameters, bond lengths, bond angles along with the tilt angles for ScO6 octahedra. The analyses of the Raman shift were also in agreement with the XRD data. All compounds in this series showed a decreasing trend in the bandgap from 4.74 to 2.91 eV as a function of increasing Ce(3+) concentration.
RESUMO
A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner.
RESUMO
The B-site tailored YIn(1-x)Fe(x)O3 (0.0≤ x≤ 1.0) series was synthesized by glycine-aided gel-combustion technique and subjected to extensive structural and electrical investigations. The temperature had tremendous bearing on the phase evolution exhibited by the system. The entire system crystallized as C-type metastable polymorph in the as-synthesized form. Hexagonal polymorphs of Fe(3+)-rich compositions could be isolated by controlled heat treatment at 750 °C. Raman spectroscopic investigations showed that, while there is a general shrinkage of the lattice due to substitution of a smaller ion at In(3+)-site, there is an apparent dilation of the Y-O bond, and this anomaly reflects in the electrical behavior exhibited by the system. The single-phasic hexagonal nominal compositions, YIn(1-x)Fe(x)O3 (0.0 ≤ x ≤ 0.3), were also studied by impedance spectroscopy. The dielectric constant was found to drastically increase from 10 for YInO3 to 1000 for YIn(0.7)Fe(0.3)O3 at room temperature stressing the role of B-site tailoring on electrical behavior. More interestingly, careful substitution of Fe into YInO3 could tune the electrical behavior from a dielectric to relaxor ferroelectric in the temperature range studied. The nominal composition YIn(0.7)Fe(0.3)O3 showed a classical relaxor ferroelectric like behavior which is an important observation in context of the search for new lead free relaxor materials.
RESUMO
The Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) series was synthesized by the gel combustion method. This system exhibited the presence of a fluorite-type phase, along with a narrow biphasic region, depending upon the Ce/Gd content in the sample. Thermal stability of these new compounds under oxidizing and reducing conditions has been investigated. The products obtained on decomposition of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 in oxidizing and reducing conditions were found to be entirely different. It was observed that in air the fluorite-type solid solutions of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 composition undergo phase separation into perovskite GdAlO3 and fluorite-type solid solutions of Gd-Ce-Zr-O or Ce-Zr-Al-O depending upon the extent of Ce and Al substitution. On the other hand, Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 samples on heating under reducing conditions show a phase separation to CeAlO3 perovskite and a defect-fluorite of Gd2Zr2O7. The extent of metastability for a typical composition of Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (nano), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O(6.6) (heated under reduced conditions), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (heated in air at 1200 °C) has been experimentally determined employing a high temperature Calvet calorimeter. On the basis of thermodynamic stability data, it could be inferred that the formation of a more stable compound in the presence of two competing cations (i.e., Gd(3+) and Ce(3+)) is guided by the crystallographic stability.
RESUMO
Rare-earth-doped gadolinium fluoride nanocrystals were synthesized by a single step synthesis employing ethylene glycol as solvent. Based on X-ray diffraction studies, stabilization of hexagonal modification of GdF(3) has been inferred. The microscopic studies show formation of uniformly distributed nanocrystals (~15 nm). The nanoparticles are readily dispersible in water and show bright luminescence in colloidal solution. The luminescence properties have been investigated as a function of activator concentrations, and enhanced optical properties have been attributed to efficient energy transfer from the Gd(3+) to the activator RE(3+) ions, which has further been confirmed by steady-state and time-resolved optical studies. It has been demonstrated that on doping appropriate amount of activators in host GdF(3), a novel white-light-emitting phosphor is obtained with CIE co-ordinates and correlated color temperature (CCT) very close to broad daylight. This can have promising applications as phosphor for white-light ultraviolet-light-emitting diodes (UV-LEDs). Our experiments showed efficient labeling of human breast carcinoma cells (MCF-7) by Tb(3+)-doped GdF(3) nanoparticles. The fluorescence intensity was found to be dependent on the surface modifying/coating agent, and the results were validated using confocal microscopy in terms of localization of these functionalized nanoparticles.
Assuntos
Fluoretos/química , Gadolínio/química , Substâncias Luminescentes/química , Nanopartículas/química , Fósforo/química , Neoplasias da Mama/diagnóstico , Linhagem Celular , Humanos , Luminescência , Nanopartículas/ultraestrutura , Difração de Raios XRESUMO
A series of Mn-substituted BaMgF(4) samples have been synthesized by a hydrothermal route. X-ray diffraction study reveals that the products are monophasic in nature. Scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) studies were carried out to investigate the morphology and stoichiometry for these compounds. X-ray photoelectron spectroscoy (XPS) and electron spin resonance (ESR) studies were done to confirm the oxidation state of dopant ion. Room temperature ferromagnetism was observed on Mn substitution at the Mg site in BaMgF(4) samples. The saturation magnetization increases initially, shows a peaking effect, and then decreases with further increase in Mn concentration in BaMg(1-x)Mn(x)F(4) (0.0 ≤ x ≤ 0.15). However, ferroelectricity was found to decrease with an increase in Mn concentration in the series of investigated BaMg(1-x)Mn(x)F(4) (0.0 ≤ x ≤ 0.15) samples. First-principle calculations, using the projector augmented wave potentials on Mn-substituted BaMgF(4), confirmed the decrease in magnetic moment with an increase in Mn content beyond certain concentration. These samples exhibit very weak magnetocapacitive coupling, which can be attributed to the very small magnetic signal observed in these samples.
RESUMO
We report on the structural and magnetic properties of nanoparticles of NiGa2O4 and 5 at.% M doped (M = Mn2+, Cu2+, Co2+, Fe3+ and Tb3+) at Ga site of NiGa2O4, synthesized by gel-combustion method. The particle size, as investigated by X-ray diffraction and transmission electron microscopy, could be fine tuned by a controlled annealing process. Weak ferromagnetism becomes significant, when the particles are in the nano regime (5-7 nm). The magnetization becomes insignificant at larger particle size ( 150 nm). Cu2+ and Tb3+ doped NiGa2O4 nanoparticles showed relatively large room temperature ferromagnetism compared to other doped (Fe, Mn and Co) and undoped NiGa2O4 samples. The weak ferromagnetism observed in the nanoparticles of NiGa2O4, which is antiferromagnetic in the bulk, is due to the surface disordered states with uncompensated spins.
Assuntos
Gálio/química , Metais/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Magnetismo , Teste de Materiais , Tamanho da PartículaRESUMO
The present work involves the synthesis of a series of Sm(2-x)Dy(x)Zr(2)O(7) compounds (0.0 ≤ x ≤ 2.0) by a controlled gel combustion process. The powders were thoroughly analyzed by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, and diffuse-reflectance UV-visible spectroscopy. The powder XRD studies revealed the system to be single-phasic throughout with retention of pyrochlore-type ordering until 40 mol % of Dy(3+), beyond which the pyrochlore lattice gives way to the defect fluorite structure. Interestingly, Raman spectroscopic studies (as against XRD studies) showed retention of pyrochlore-type ordering throughout the homogeneity range of the compositions studied. This is perhaps the first study that reports retention of a weak pyrochlore-type superstructure in the Dy(2)Zr(2)O(7) system, which was otherwise known to crystallize in the defect fluorite system. The ionic conductivity measurements showed an increase in the activation energy (E(a)) with an increase in the mole percent of Dy(3+) owing to the decreased mobility with an increase in the degree of disorder. The system possesses a tunable band gap with varying amounts of Dy(3+). First-principles calculations were performed to support a decrease in the band gap of the doped system with an increase in the Dy(3+) content. The potential as photocatalysts of some of these compositions was explored, and they exhibited high photocatalytic activity for degradation of xylenol orange, with t(1/2) increasing from pure Sm(2)Zr(2)O(7) to pure Dy(2)Zr(2)O(7).
RESUMO
A series of doped CeF(3): RE(3+) (RE(3+): Tb(3+), Eu(3+) and Dy(3+)) nanoparticles were synthesized, with the aim of obtaining a white light emitting composition, by a simple polyol route at 160°C and characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. Uniformly distributed and highly water-dispersible rectangular nanoparticles (length ~15-20 nm, breadth ~5-10 nm) were obtained. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Lifetime studies revealed that optimum luminescence is observed for 2.5 mol% Dy(3+) and 7.5 mol% Tb(3+). The energy transfer efficiencies (Ce(3+) to activators) were found to be 89% for CeF(3): Tb(3+) (7.5 mol%) nanoparticles and 60% for CeF(3): Dy(3+) (2.5 mol%) nanoparticles. Different concentrations of Tb(3+), Eu(3+) and Dy(3+) were doped to achieve a white light emitting phosphor for UV-based LEDs (light emitting diodes). Finally CeF(3), triply doped with 2.0 mol%Tb(3+), 4.5 mol% Eu(3+) and 3.5 mol% Dy(3+), was found to have impressive chromaticity co-ordinates, close to broad day light. The colloidal solutions of doped CeF(3) nanoparticles emitted bright green (Tb(3+)), blue (Dy(3+)) and white (triply doped) luminescence upon host excitation. Composites of poly methyl methacrylate (PMMA) and poly vinyl alcohol (PVA) were made with CeF(3): 5.0 mol%Tb(3+), CeF(3): 5.0 mol% Dy(3+) and triply doped white light emitting composition. The CeF(3)/PMMA (PVA) nanocomposite films, so obtained, are highly transparent (in the visible spectral range) and exhibit strong photoluminescence upon UV excitation.