Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Cell Rep ; 28(4): 938-948.e6, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340155

RESUMO

The phenotypic effect of perturbing a gene's activity depends on the activity level of other genes, reflecting the notion that phenotypes are emergent properties of a network of functionally interacting genes. In the context of cancer, contemporary investigations have primarily focused on just one type of functional relationship between two genes-synthetic lethality (SL). Here, we define the more general concept of "survival-associated pairwise gene expression states" (SPAGEs) as gene pairs whose joint expression levels are associated with survival. We describe a data-driven approach called SPAGE-finder that when applied to The Cancer Genome Atlas (TCGA) data identified 71,946 SPAGEs spanning 12 distinct types, only a minority of which are SLs. The detected SPAGEs explain cancer driver genes' tissue specificity and differences in patients' response to drugs and stratify breast cancer tumors into refined subtypes. These results expand the scope of cancer SPAGEs and lay a conceptual basis for future studies of SPAGEs and their translational applications.

2.
G3 (Bethesda) ; 9(8): 2447-2461, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31151998

RESUMO

Inferring subject ancestry using genetic data is an important step in genetic association studies, required for dealing with population stratification. It has become more challenging to infer subject ancestry quickly and accurately since large amounts of genotype data, collected from millions of subjects by thousands of studies using different methods, are accessible to researchers from repositories such as the database of Genotypes and Phenotypes (dbGaP) at the National Center for Biotechnology Information (NCBI). Study-reported populations submitted to dbGaP are often not harmonized across studies or may be missing. Widely-used methods for ancestry prediction assume that most markers are genotyped in all subjects, but this assumption is unrealistic if one wants to combine studies that used different genotyping platforms. To provide ancestry inference and visualization across studies, we developed a new method, GRAF-pop, of ancestry prediction that is robust to missing genotypes and allows researchers to visualize predicted population structure in color and in three dimensions. When genotypes are dense, GRAF-pop is comparable in quality and running time to existing ancestry inference methods EIGENSTRAT, FastPCA, and FlashPCA2, all of which rely on principal components analysis (PCA). When genotypes are not dense, GRAF-pop gives much better ancestry predictions than the PCA-based methods. GRAF-pop employs basic geometric and probabilistic methods; the visualized ancestry predictions have a natural geometric interpretation, which is lacking in PCA-based methods. Since February 2018, GRAF-pop has been successfully incorporated into the dbGaP quality control process to identify inconsistencies between study-reported and computationally predicted populations and to provide harmonized population values in all new dbGaP submissions amenable to population prediction, based on marker genotypes. Plots, produced by GRAF-pop, of summary population predictions are available on dbGaP study pages, and the software, is available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/Software.cgi.

3.
J Med Genet ; 56(7): 444-452, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30842225

RESUMO

BACKGROUND: A single variant in NAA10 (c.471+2T>A), the gene encoding N-acetyltransferase 10, has been associated with Lenz microphthalmia syndrome. In this study, we aimed to identify causative variants in families with syndromic X-linked microphthalmia. METHODS: Three families, including 15 affected individuals with syndromic X-linked microphthalmia, underwent analyses including linkage analysis, exome sequencing and targeted gene sequencing. The consequences of two identified variants in NAA10 were evaluated using quantitative PCR and RNAseq. RESULTS: Genetic linkage analysis in family 1 supported a candidate region on Xq27-q28, which included NAA10. Exome sequencing identified a hemizygous NAA10 polyadenylation signal (PAS) variant, chrX:153,195,397T>C, c.*43A>G, which segregated with the disease. Targeted sequencing of affected males from families 2 and 3 identified distinct NAA10 PAS variants, chrX:g.153,195,401T>C, c.*39A>G and chrX:g.153,195,400T>C, c.*40A>G. All three variants were absent from gnomAD. Quantitative PCR and RNAseq showed reduced NAA10 mRNA levels and abnormal 3' UTRs in affected individuals. Targeted sequencing of NAA10 in 376 additional affected individuals failed to identify variants in the PAS. CONCLUSION: These data show that PAS variants are the most common variant type in NAA10-associated syndromic microphthalmia, suggesting reduced RNA is the molecular mechanism by which these alterations cause microphthalmia/anophthalmia. We reviewed recognised variants in PAS associated with Mendelian disorders and identified only 23 others, indicating that NAA10 harbours more than 10% of all known PAS variants. We hypothesise that PAS in other genes harbour unrecognised pathogenic variants associated with Mendelian disorders. The systematic interrogation of PAS could improve genetic testing yields.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30170123

RESUMO

BACKGROUND: Caspase activation and recruitment domain 11 (CARD11) encodes a scaffold protein in lymphocytes that links antigen receptor engagement with downstream signaling to nuclear factor κB, c-Jun N-terminal kinase, and mechanistic target of rapamycin complex 1. Germline CARD11 mutations cause several distinct primary immune disorders in human subjects, including severe combined immune deficiency (biallelic null mutations), B-cell expansion with nuclear factor κB and T-cell anergy (heterozygous, gain-of-function mutations), and severe atopic disease (loss-of-function, heterozygous, dominant interfering mutations), which has focused attention on CARD11 mutations discovered by using whole-exome sequencing. OBJECTIVES: We sought to determine the molecular actions of an extended allelic series of CARD11 and to characterize the expanding range of clinical phenotypes associated with heterozygous CARD11 loss-of-function alleles. METHODS: Cell transfections and primary T-cell assays were used to evaluate signaling and function of CARD11 variants. RESULTS: Here we report on an expanded cohort of patients harboring novel heterozygous CARD11 mutations that extend beyond atopy to include other immunologic phenotypes not previously associated with CARD11 mutations. In addition to (and sometimes excluding) severe atopy, heterozygous missense and indel mutations in CARD11 presented with immunologic phenotypes similar to those observed in signal transducer and activator of transcription 3 loss of function, dedicator of cytokinesis 8 deficiency, common variable immunodeficiency, neutropenia, and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome. Pathogenic variants exhibited dominant negative activity and were largely confined to the CARD or coiled-coil domains of the CARD11 protein. CONCLUSION: These results illuminate a broader phenotypic spectrum associated with CARD11 mutations in human subjects and underscore the need for functional studies to demonstrate that rare gene variants encountered in expected and unexpected phenotypes must nonetheless be validated for pathogenic activity.

5.
Genome Biol Evol ; 10(8): 1902-1919, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29986017

RESUMO

We previously proposed that changes in the efficiency of protein translation are associated with autism spectrum disorders (ASDs). This hypothesis connects environmental factors and genetic factors because each can alter translation efficiency. For genetic factors, we previously tested our hypothesis using a small set of ASD-associated genes, a small set of ASD-associated variants, and a statistic to quantify by how much a single nucleotide variant (SNV) in a protein coding region changes translation speed. In this study, we confirm and extend our hypothesis using a published set of 1,800 autism quartets (parents, one affected child and one unaffected child) and genome-wide variants. Then, we extend the test statistic to combine translation efficiency with other possibly relevant variables: ribosome profiling data, presence/absence of CpG dinucleotides, and phylogenetic conservation. The inclusion of ribosome profiling abundances strengthens our results for male-male sibling pairs. The inclusion of CpG information strengthens our results for female-female pairs, giving an insight into the significant gender differences in autism incidence. By combining the single-variant test statistic for all variants in a gene, we obtain a single gene score to evaluate how well a gene distinguishes between affected and unaffected siblings. Using statistical methods, we compute gene sets that have some power to distinguish between affected and unaffected siblings by translation efficiency of gene variants. Pathway and enrichment analysis of those gene sets suggest the importance of Wnt signaling pathways, some other pathways related to cancer, ATP binding, and ATP-ase pathways in the etiology of ASDs.

6.
Sci Immunol ; 3(24)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907690

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a central regulator of immune homeostasis. STAT3 levels are strictly controlled, and STAT3 impairment contributes to several diseases including the monogenic autosomal-dominant hyper-immunoglobulin E (IgE) syndrome (AD-HIES). We investigated patients of four consanguineous families with an autosomal-recessive disorder resembling the phenotype of AD-HIES, with symptoms of immunodeficiency, recurrent infections, skeletal abnormalities, and elevated IgE. Patients presented with reduced STAT3 expression and diminished T helper 17 cell numbers, in absence of STAT3 mutations. We identified two distinct homozygous nonsense mutations in ZNF341, which encodes a zinc finger transcription factor. Wild-type ZNF341 bound to and activated the STAT3 promoter, whereas the mutant variants showed impaired transcriptional activation, partly due to nuclear translocation failure. In summary, nonsense mutations in ZNF341 account for the STAT3-like phenotype in four autosomal-recessive kindreds. Thus, ZNF341 is a previously unrecognized regulator of immune homeostasis.

7.
Carcinogenesis ; 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29800151

RESUMO

Intratumor heterogeneity is a major challenge in cancer treatment. To decipher patterns of chromosomal heterogeneity, we analyzed six colorectal cancer cell lines by multiplex interphase FISH (miFISH). The mismatch repair deficient cell lines DLD-1 and HCT116 had the most stable copy numbers, whereas aneuploid cell lines (HT-29, SW480, SW620 and H508) displayed a higher degree of instability. We subsequently assessed the clonal evolution of single cells in two CRC cell lines, SW480 and HT-29, which both have aneuploid karyotypes but different degrees of chromosomal instability. The clonal compositions of the single cell-derived daughter lines, as assessed by miFISH, differed for HT-29 and SW480. Daughters of HT-29 were stable, clonal, with little heterogeneity. Daughters of SW480 were more heterogeneous, with the single cell-derived daughter lines separating into two distinct populations with different ploidy (hyper-diploid and near-triploid), morphology, gene expression and tumorigenicity. To better understand the evolutionary trajectory for the two SW480 populations, we constructed phylogenetic trees which showed ongoing instability in the daughter lines. When analyzing the evolutionary development over time, most single cell-derived daughter lines maintained their major clonal pattern, with the exception of one daughter line that showed a switch involving a loss of APC. Our meticulous analysis of the clonal evolution and composition of these colorectal cancer models shows that all chromosomes are subject to segregation errors, however, specific net genomic imbalances are maintained.  Karyotype evolution is driven by the necessity to arrive at and maintain a specific plateau of chromosomal copy numbers as the drivers of carcinogenesis.

8.
Genet Med ; 20(10): 1175-1185, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29469822

RESUMO

PURPOSE: To characterize the molecular genetics of autosomal recessive Noonan syndrome. METHODS: Families underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction. RESULTS: Twelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings. CONCLUSION: These clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.

9.
J Allergy Clin Immunol ; 141(4): 1427-1438, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28782633

RESUMO

BACKGROUND: Primary antibody deficiencies (PADs) are the most frequent primary immunodeficiencies in human subjects. The genetic causes of PADs are largely unknown. Sec61 translocon alpha 1 subunit (SEC61A1) is the major subunit of the Sec61 complex, which is the main polypeptide-conducting channel in the endoplasmic reticulum membrane. SEC61A1 is a target gene of spliced X-box binding protein 1 and strongly induced during plasma cell (PC) differentiation. OBJECTIVE: We identified a novel genetic defect and studied its pathologic mechanism in 11 patients from 2 unrelated families with PADs. METHODS: Whole-exome and targeted sequencing were conducted to identify novel genetic mutations. Functional studies were carried out ex vivo in primary cells of patients and in vitro in different cell lines to assess the effect of SEC61A1 mutations on B-cell differentiation and survival. RESULTS: We investigated 2 families with patients with hypogammaglobulinemia, severe recurrent respiratory tract infections, and normal peripheral B- and T-cell subpopulations. On in vitro stimulation, B cells showed an intrinsic deficiency to develop into PCs. Genetic analysis and targeted sequencing identified novel heterozygous missense (c.254T>A, p.V85D) and nonsense (c.1325G>T, p.E381*) mutations in SEC61A1, segregating with the disease phenotype. SEC61A1-V85D was deficient in cotranslational protein translocation, and it disturbed the cellular calcium homeostasis in HeLa cells. Moreover, SEC61A1-V85D triggered the terminal unfolded protein response in multiple myeloma cell lines. CONCLUSION: We describe a monogenic defect leading to a specific PC deficiency in human subjects, expanding our knowledge about the pathogenesis of antibody deficiencies.

10.
Bioinformatics ; 34(5): 755-759, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069347

RESUMO

Motivation: Nucleic acid sequences in public databases should not contain vector contamination, but many sequences in GenBank do (or did) contain vectors. The National Center for Biotechnology Information uses the program VecScreen to screen submitted sequences for contamination. Additional tools are needed to distinguish true-positive (contamination) from false-positive (not contamination) VecScreen matches. Results: A principal reason for false-positive VecScreen matches is that the sequence and the matching vector subsequence originate from closely related or identical organisms (for example, both originate in Escherichia coli). We collected information on the taxonomy of sources of vector segments in the UniVec database used by VecScreen. We used that information in two overlapping software pipelines for retrospective analysis of contamination in GenBank and for prospective analysis of contamination in new sequence submissions. Using the retrospective pipeline, we identified and corrected over 8000 contaminated sequences in the nonredundant nucleotide database. The prospective analysis pipeline has been in production use since April 2017 to evaluate some new GenBank submissions. Availability and implementation: Data on the sources of UniVec entries were included in release 10.0 (ftp://ftp.ncbi.nih.gov/pub/UniVec/). The main software is freely available at https://github.com/aaschaffer/vecscreen_plus_taxonomy. Contact: aschaffe@helix.nih.gov. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados de Ácidos Nucleicos/normas , Análise de Sequência de DNA/métodos , Software , Bactérias , Eucariotos
11.
Genes Chromosomes Cancer ; 57(4): 165-175, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29181861

RESUMO

The clinical course of breast cancer varies from one patient to another. Currently, the choice of therapy relies on clinical parameters and histological and molecular tumor features. Alas, these markers are informative in only a subset of patients. Therefore, additional predictors of disease outcome would be valuable for treatment stratification. Extensive studies showed that the degree of variation of the nuclear DNA content, i.e., aneuploidy, determines prognosis. Our aim was to further elucidate the molecular basis of aneuploidy. We analyzed five diploid and six aneuploid tumors with more than 20 years of follow-up. By performing FISH with a multiplexed panel of 10 probes to enumerate copy numbers in individual cells, and by sequencing 563 cancer-related genes, we analyzed how aneuploidy is linked to intratumor heterogeneity. In our cohort, none of the patients with diploid tumors died of breast cancer during follow-up in contrast to four of six patients with aneuploid tumors (mean survival 86.4 months). The FISH analysis showed markedly increased genomic instability and intratumor heterogeneity in aneuploid tumors. MYC gain was observed in only 20% of the diploid cancers, while all aneuploid cases showed a gain. The mutation burden was similar in diploid and aneuploid tumors, however, TP53 mutations were not observed in diploid tumors, but in all aneuploid tumors in our collective. We conclude that quantitative measurements of intratumor heterogeneity by multiplex FISH, detection of MYC amplification and TP53 mutation could augment prognostication in breast cancer patients.


Assuntos
Aneuploidia , Neoplasias da Mama/genética , Mutação , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , DNA de Neoplasias/genética , Feminino , Citometria de Fluxo , Amplificação de Genes , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
Sci Rep ; 7(1): 16051, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167558

RESUMO

A key feature in the pathogenesis of OSCC is genetic instability, which results in altered expression of genes located in amplified/deleted chromosomal regions. In a previous study we have shown that the amplification of the 11q22.1-q22.2 region, encoding cIAP1 and cIAP2, is associated with lymph node metastasis and poor clinical outcome in OSCC. Here, we validate the aCGH results by nuc ish and detect a weak amplification at the 11q22.1-q22.2 locus in 37% of the 182 samples tested. We find positive correlation of 11q22.1-q22.2 amplification with lymph node metastasis, reduced survival, and increased cancer recurrence, and we observe that patients with 11q22.1-q22.2 amplification fail to respond to radiotherapy. We confirm the concurrent overexpression of cIAP1 and cIAP2 and observe differential subcellular localization of the two proteins in OSCC. To ascertain the roles of cIAP1/cIAP2 in lymph node metastasis and radioresistance, we use an in vitro pre-clinical model and confirm the role of cIAP1 in invasion and the role of cIAP2 in invasion and migration. Studies of other tumor types in which cIAP1 is overexpressed suggest that multi-regimen treatments including SMAC mimetics may be effective. Thus, the evaluation of 11q22.1-q22.2 amplifications in OSCC patients may help choose the most effective treatment.

13.
J Med Genet ; 54(10): 665-673, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28780564

RESUMO

BACKGROUND: Enlargement of the vestibular aqueduct (EVA) is the most common radiological abnormality in children with sensorineural hearing loss. Mutations in coding regions and splice sites of the SLC26A4 gene are often detected in Caucasians with EVA. Approximately one-fourth of patients with EVA have two mutant alleles (M2), one-fourth have one mutant allele (M1) and one-half have no mutant alleles (M0). The M2 genotype is correlated with a more severe phenotype. METHODS: We performed genotype-haplotype analysis and massively parallel sequencing of the SLC26A4 region in patients with M1 EVA and their families. RESULTS: We identified a shared novel haplotype, termed CEVA (Caucasian EVA), composed of 12 uncommon variants upstream of SLC26A4. The presence of the CEVA haplotype on seven of ten 'mutation-negative' chromosomes in a National Institutes of Health M1 EVA discovery cohort and six of six mutation-negative chromosomes in a Danish M1 EVA replication cohort is higher than the observed prevalence of 28 of 1006 Caucasian control chromosomes (p<0.0001 for each EVA cohort). The corresponding heterozygous carrier rate is 28/503 (5.6%). The prevalence of CEVA (11 of 126) is also increased among M0 EVA chromosomes (p=0.0042). CONCLUSIONS: The CEVA haplotype causally contributes to most cases of Caucasian M1 EVA and, possibly, some cases of M0 EVA. The CEVA haplotype of SLC26A4 defines the most common allele associated with hereditary hearing loss in Caucasians. The diagnostic yield and prognostic utility of sequence analysis of SLC26A4 exons and splice sites will be markedly increased by addition of testing for the CEVA haplotype.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana Transportadoras/genética , Aqueduto Vestibular/anormalidades , Alelos , Criança , Cromossomos Humanos Par 7/genética , Estudos de Coortes , Feminino , Variação Genética , Genótipo , Haplótipos , Heterozigoto , Humanos , Masculino , Repetições de Microssatélites , Análise de Sequência de DNA , Transportadores de Sulfato
14.
PLoS One ; 12(6): e0179106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28609482

RESUMO

Genome-wide association studies (GWAS) usually rely on the assumption that different samples are not from closely related individuals. Detection of duplicates and close relatives becomes more difficult both statistically and computationally when one wants to combine datasets that may have been genotyped on different platforms. The dbGaP repository at the National Center of Biotechnology Information (NCBI) contains datasets from hundreds of studies with over one million samples. There are many duplicates and closely related individuals both within and across studies from different submitters. Relationships between studies cannot always be identified by the submitters of individual datasets. To aid in curation of dbGaP, we developed a rapid statistical method called Genetic Relationship and Fingerprinting (GRAF) to detect duplicates and closely related samples, even when the sets of genotyped markers differ and the DNA strand orientations are unknown. GRAF extracts genotypes of 10,000 informative and independent SNPs from genotype datasets obtained using different methods, and implements quick algorithms that enable it to find all of the duplicate pairs from more than 880,000 samples within and across dbGaP studies in less than two hours. In addition, GRAF uses two statistical metrics called All Genotype Mismatch Rate (AGMR) and Homozygous Genotype Mismatch Rate (HGMR) to determine subject relationships directly from the observed genotypes, without estimating probabilities of identity by descent (IBD), or kinship coefficients, and compares the predicted relationships with those reported in the pedigree files. We implemented GRAF in a freely available C++ program of the same name. In this paper, we describe the methods in GRAF and validate the usage of GRAF on samples from the dbGaP repository. Other scientists can use GRAF on their own samples and in combination with samples downloaded from dbGaP.


Assuntos
Algoritmos , Biologia Computacional/métodos , Mineração de Dados/métodos , Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Reprodutibilidade dos Testes
15.
Nat Genet ; 49(5): 742-752, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28369036

RESUMO

We identify SMARCD2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily D, member 2), also known as BAF60b (BRG1/Brahma-associated factor 60b), as a critical regulator of myeloid differentiation in humans, mice, and zebrafish. Studying patients from three unrelated pedigrees characterized by neutropenia, specific granule deficiency, myelodysplasia with excess of blast cells, and various developmental aberrations, we identified three homozygous loss-of-function mutations in SMARCD2. Using mice and zebrafish as model systems, we showed that SMARCD2 controls early steps in the differentiation of myeloid-erythroid progenitor cells. In vitro, SMARCD2 interacts with the transcription factor CEBPɛ and controls expression of neutrophil proteins stored in specific granules. Defective expression of SMARCD2 leads to transcriptional and chromatin changes in acute myeloid leukemia (AML) human promyelocytic cells. In summary, SMARCD2 is a key factor controlling myelopoiesis and is a potential tumor suppressor in leukemia.


Assuntos
Diferenciação Celular/genética , Redes Reguladoras de Genes , Neutrófilos/metabolismo , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Análise Mutacional de DNA , Saúde da Família , Feminino , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Peixe-Zebra
16.
Transl Oncol ; 10(3): 396-409, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28433800

RESUMO

We present an integrative genome-wide analysis that can be used to predict the risk of progression from leukoplakia to oral squamous cell carcinoma (OSCC) arising in the gingivobuccal complex (GBC). We find that the genomic and transcriptomic profiles of leukoplakia resemble those observed in later stages of OSCC and that several changes are associated with this progression, including amplification of 8q24.3, deletion of 8p23.2, and dysregulation of DERL3, EIF5A2, ECT2, HOXC9, HOXC13, MAL, MFAP5 and NELL2. Comparing copy number profiles of primary tumors with and without lymph-node metastasis, we identify alterations associated with metastasis, including amplifications of 3p26.3, 8q24.21, 11q22.1, 11q22.3 and deletion of 8p23.2. Integrative analysis reveals several biomarkers that have never or rarely been reported in previous OSCC studies, including amplifications of 1p36.33 (attributable to MXRA8), 3q26.31 (EIF5A2), 9p24.1 (CD274), and 12q13.2 (HOXC9 and HOXC13). Additionally, we find that amplifications of 1p36.33 and 11q22.1 are strongly correlated with poor clinical outcome. Overall, our findings delineate genomic changes that can be used in treatment management for patients with potentially malignant leukoplakia and OSCC patients with higher risk of lymph-node metastasis.

17.
Nat Rev Genet ; 18(4): 213-229, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28190876

RESUMO

Rapid advances in high-throughput sequencing and a growing realization of the importance of evolutionary theory to cancer genomics have led to a proliferation of phylogenetic studies of tumour progression. These studies have yielded not only new insights but also a plethora of experimental approaches, sometimes reaching conflicting or poorly supported conclusions. Here, we consider this body of work in light of the key computational principles underpinning phylogenetic inference, with the goal of providing practical guidance on the design and analysis of scientifically rigorous tumour phylogeny studies. We survey the range of methods and tools available to the researcher, their key applications, and the various unsolved problems, closing with a perspective on the prospects and broader implications of this field.


Assuntos
Evolução Biológica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Filogenia , Algoritmos , Animais , Humanos
18.
Genome Biol ; 18(1): 16, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122634

RESUMO

BACKGROUND: Identification of single nucleotide polymorphisms (SNPs) associated with gene expression levels, known as expression quantitative trait loci (eQTLs), may improve understanding of the functional role of phenotype-associated SNPs in genome-wide association studies (GWAS). The small sample sizes of some previous eQTL studies have limited their statistical power. We conducted an eQTL investigation of microarray-based gene and exon expression levels in whole blood in a cohort of 5257 individuals, exceeding the single cohort size of previous studies by more than a factor of 2. RESULTS: We detected over 19,000 independent lead cis-eQTLs and over 6000 independent lead trans-eQTLs, targeting over 10,000 gene targets (eGenes), with a false discovery rate (FDR) < 5%. Of previously published significant GWAS SNPs, 48% are identified to be significant eQTLs in our study. Some trans-eQTLs point toward novel mechanistic explanations for the association of the SNP with the GWAS-related phenotype. We also identify 59 distinct blocks or clusters of trans-eQTLs, each targeting the expression of sets of six to 229 distinct trans-eGenes. Ten of these sets of target genes are significantly enriched for microRNA targets (FDR < 5%). Many of these clusters are associated in GWAS with multiple phenotypes. CONCLUSIONS: These findings provide insights into the molecular regulatory patterns involved in human physiology and pathophysiology. We illustrate the value of our eQTL database in the context of a recent GWAS meta-analysis of coronary artery disease and provide a list of targeted eGenes for 21 of 58 GWAS loci.


Assuntos
Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Locos de Características Quantitativas , Adulto , Idoso , Alelos , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Reprodutibilidade dos Testes , Navegador
19.
Nucleic Acids Res ; 45(D1): D482-D490, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899678

RESUMO

The Virus Variation Resource is a value-added viral sequence data resource hosted by the National Center for Biotechnology Information. The resource is located at http://www.ncbi.nlm.nih.gov/genome/viruses/variation/ and includes modules for seven viral groups: influenza virus, Dengue virus, West Nile virus, Ebolavirus, MERS coronavirus, Rotavirus A and Zika virus Each module is supported by pipelines that scan newly released GenBank records, annotate genes and proteins and parse sample descriptors and then map them to controlled vocabulary. These processes in turn support a purpose-built search interface where users can select sequences based on standardized gene, protein and metadata terms. Once sequences are selected, a suite of tools for downloading data, multi-sequence alignment and tree building supports a variety of user directed activities. This manuscript describes a series of features and functionalities recently added to the Virus Variation Resource.


Assuntos
Biologia Computacional/métodos , Surtos de Doenças , Variação Genética , Software , Viroses/epidemiologia , Viroses/virologia , Vírus/genética , Bases de Dados Genéticas
20.
PLoS One ; 11(6): e0158569, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362268

RESUMO

Advances in fluorescence in situ hybridization (FISH) make it feasible to detect multiple copy-number changes in hundreds of cells of solid tumors. Studies using FISH, sequencing, and other technologies have revealed substantial intra-tumor heterogeneity. The evolution of subclones in tumors may be modeled by phylogenies. Tumors often harbor aneuploid or polyploid cell populations. Using a FISH probe to estimate changes in ploidy can guide the creation of trees that model changes in ploidy and individual gene copy-number variations. We present FISHtrees 3.0, which implements a ploidy-based tree building method based on mixed integer linear programming (MILP). The ploidy-based modeling in FISHtrees includes a new formulation of the problem of merging trees for changes of a single gene into trees modeling changes in multiple genes and the ploidy. When multiple samples are collected from each patient, varying over time or tumor regions, it is useful to evaluate similarities in tumor progression among the samples. Therefore, we further implemented in FISHtrees 3.0 a new method to build consensus graphs for multiple samples. We validate FISHtrees 3.0 on a simulated data and on FISH data from paired cases of cervical primary and metastatic tumors and on paired breast ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). Tests on simulated data show improved accuracy of the ploidy-based approach relative to prior ploidyless methods. Tests on real data further demonstrate novel insights these methods offer into tumor progression processes. Trees for DCIS samples are significantly less complex than trees for paired IDC samples. Consensus graphs show substantial divergence among most paired samples from both sets. Low consensus between DCIS and IDC trees may help explain the difficulty in finding biomarkers that predict which DCIS cases are at most risk to progress to IDC. The FISHtrees software is available at ftp://ftp.ncbi.nih.gov/pub/FISHtrees.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Bases de Dados Genéticas , Hibridização in Situ Fluorescente/métodos , Neoplasias do Colo do Útero/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Humanos , Ploidias , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA