Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Stem Cell Res ; 49: 102059, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33161238

RESUMO

Bi-allelic loss-of-function mutations in the gene encoding the motor protein KIF1C are associated with Hereditary Spastic Paraplegia (HSP) type SPG58, a slowly progressive neurodegenerative motoneuron disease. The biological role of KIF1C is incompletely understood. We used a protein-based CRISPR/Cas9 genome editing approach to generate a homozygous KIF1C knock-out iPSC line (HIHRSi003-A-1) from a healthy control. This iPSC-KIF1C-/- line and the corresponding isogenic control are a useful model to study the physiological function of KIF1C and the pathophysiological consequences of KIF1C dysfunction in human disease.

2.
J Neurol ; 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106888

RESUMO

In view of upcoming clinical trials, quantitative molecular markers accessible in peripheral blood are of critical importance as prognostic or pharmacodynamic markers in genetic neurodegenerative diseases such as Spinocerebellar Ataxia Type 3 (SCA3), in particular for signaling target engagement. In this pilot study, we focused on the quantification of ataxin-3, the protein altered in SCA3, in human peripheral blood mononuclear cells (PBMCs) acquired from preataxic and ataxic SCA3 mutation carriers as well as healthy controls, as a molecular marker directly related to SCA3 pathophysiology. We established two different highly sensitive TR-FRET-based immunoassays to measure the protein levels of either total full-length, non-expanded and expanded, ataxin-3 or specifically polyQ-expanded ataxin-3. In PBMCs, a clear discrimination between SCA3 mutation carrier and controls were seen measuring polyQ-expanded ataxin-3 protein level. Additionally, polyQ-expanded ataxin-3 protein levels correlated with disease progression and clinical severity as assessed by the Scale for the Assessment and Rating of Ataxia. Total full-length ataxin-3 protein levels were directly influenced by the expression levels of the polyQ-expanded ataxin-3 protein, but were not correlated with clinical parameters. Assessment of ataxin-3 levels in fibroblasts or induced pluripotent stem cells allowed to distinguish mutation carriers from controls, thus providing proof-of-principle validation of our PBMC findings across cell lines. Total full-length or polyQ-expanded ataxin-3 protein was not detectable by TR-FRET assays in other biofluids like plasma or cerebrospinal fluid, indicating the need for ultra-sensitive assays for these biofluids. Standardization studies revealed that tube systems, blood sampling, and PBMC preparation may influence ataxin-3 protein levels indicating a high demand for standardized protocols in biomarker studies. In conclusion, the polyQ-expanded ataxin-3 protein is a promising candidate as a molecular target engagement marker in SCA3 in future clinical trials, determinable even in-easily accessible-peripheral blood biomaterials. These results, however, require validation in a larger cohort and further standardization of modifying conditions.

3.
Front Cell Dev Biol ; 8: 544043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072739

RESUMO

Disease modeling requires appropriate cellular models that best mimic the underlying pathophysiology. Human origin and an adequate expression of the disease protein are pre-requisites that support information from a model to be meaningful. In this study we investigated expression profiles of (i) PBMCs and (ii) fibroblasts as patient derived cells as well as (iii) lymphoblasts and (iv) induced pluripotent stem cells (iPSC) as immortalized sources, and (v) iPSC-derived cortical neurons to assess their aptitude to model motor neuron diseases (MNDs) including hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). We generated all five different cell types from two healthy donors and performed RNA sequencing to display expression patterns in MND-related genes. For the ten most common HSP genotypes we validated gene expression by qPCR. To verify the results on protein level, proteome analysis of fibroblasts, iPSCs and cortical neurons was performed. Depending on the specific MND gene we found largely different expression patterns. Out of 168 MND-related genes, 50 had their highest expression in iPSC-derived cortical neurons, 41 were most strongly expressed in fibroblasts, 26 in lymphoblasts, 22 in iPSCs, and 14 in PBMCs. Pathophysiologically related MNDs like HSPs associated with axonal transport deficits shared highest expression in cortical neurons. 15 MND-related genes were not detectable in any of the analyzed cell types. This may reflect the critical dependency of motor neurons on support of other cell types like oligodendrocytes which express myelin proteins like L1CAM (SPG1), PLP1 (SPG2) and MAG (SPG75) which are lacking in neurons but cause MNDs if mutated. This study provides comprehensive information on expression of genes associated with a large spectrum of MNDs. Expression profiles can be used to inform on appropriate cell models for genotype specific motor neuron research.

4.
Neurology ; 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046606

RESUMO

OBJECTIVE: To compare disease progression between different onset forms of Metachromatic Leukodystrophy (MLD) and to investigate the influence of the type of first symptoms on the natural course and dynamic of disease progression. METHODS: Clinical, genetic and biochemical parameters were analyzed within a nationwide study of patients with late-infantile (LI, onset ≤ 2.5 years), early-juvenile (EJ, onset 2.6 - < 6 years), late-juvenile (LJ, onset 6 - < 16 years), and adult (onset ≥ 16 years) forms of MLD. First symptoms were categorized as motor symptoms only, cognitive symptoms only, or both.. Standardized clinical endpoints included loss of motor and language functions, as well as dysphagia/tube feeding. RESULTS: 97 Patients with MLD were enrolled. Patients with LI (n=35) and EJ (n=18) MLD exhibited similarly rapid disease progression, all starting with motor symptoms (with or without additional cognitive symptoms). In LJ (n=38) and adult-onset (n=6) patients, the course of the disease was as rapid as in the early-onset forms, when motor symptoms were present at disease onset, while patients with only cognitive symptoms at disease onset exhibited significantly milder disease progression, independent of their age at onset. A certain genotype-phenotype correlation was observed. CONCLUSIONS: In addition to age at onset, the type of first symptoms predicts the rate of disease progression in MLD. These findings are important for counselling and therapy. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in patients with MLD, age at onset and the type of first symptoms predict the rate of disease progression.

5.
Sci Rep ; 10(1): 16736, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028849

RESUMO

ACO2 is a mitochondrial protein, which is critically involved in the function of the tricarboxylic acid cycle (TCA), the maintenance of iron homeostasis, oxidative stress defense and the integrity of mitochondrial DNA (mtDNA). Mutations in the ACO2 gene were identified in patients suffering from a broad range of symptoms, including optic nerve atrophy, cortical atrophy, cerebellar atrophy, hypotonia, seizures and intellectual disabilities. In the present study, we identified a heterozygous 51 bp deletion (c.1699_1749del51) in ACO2 in a family with autosomal dominant inherited isolated optic atrophy. A complementation assay using aco1-deficient yeast revealed a growth defect for the mutant ACO2 variant substantiating a pathogenic effect of the deletion. We used patient-derived fibroblasts to characterize cellular phenotypes and found a decrease of ACO2 protein levels, while ACO2 enzyme activity was not affected compared to two age- and gender-matched control lines. Several parameters of mitochondrial function, including mitochondrial morphology, mitochondrial membrane potential or mitochondrial superoxide production, were not changed under baseline conditions. However, basal respiration, maximal respiration, and spare respiratory capacity were reduced in mutant cells. Furthermore, we observed a reduction of mtDNA copy number and reduced mtDNA transcription levels in ACO2-mutant fibroblasts. Inducing oxidative stress led to an increased susceptibility for cell death in ACO2-mutant fibroblasts compared to controls. Our study reveals that a monoallelic mutation in ACO2 is sufficient to promote mitochondrial dysfunction and increased vulnerability to oxidative stress as main drivers of cell death related to optic nerve atrophy.

6.
Sci Rep ; 10(1): 15093, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934269

RESUMO

X-linked Adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene resulting in the accumulation of very long chain fatty acids (VLCFA). X-ALD is the most common peroxisomal disorder with adult patients (male and female) presenting with progressive spastic paraparesis with bladder disturbance, sensory ataxia with impaired vibration sense, and leg pain. 80% of male X-ALD patients have an adrenal failure, while adrenal dysfunction is rare in women with X-ALD. The objective of this study was to define optimal serum VLCFA cutoff values in patients with X-ALD-like phenotypes for the differentiation of genetically confirmed X-ALD and Non-X-ALD individuals. Three groups were included into this study: a) X-ALD cases with confirmed ABCD1 mutations (n = 34) and two Non-X-ALD cohorts: b) Patients with abnormal serum VCLFA levels despite negative testing for ABCD1 mutations (n = 15) resulting from a total of 1,953 VLCFA tests c) Phenotypically matching patients as Non-X-ALD controls (n = 104). Receiver operating curve analysis was used to optimize VLCFA cutoff values, which differentiate patients with genetically confirmed X-ALD and Non-X-ALD individuals. The serum concentration of C26:0 was superior to C24:0 for the detection of X-ALD. The best differentiation of Non-X-ALD and X-ALD individuals was obtained with a cutoff value of < 1.0 for the C24:0/C22:0 ratio resulting in a sensitivity of 97%, a specificity of 94.1% and a positive predictive value (PPV) of 83.8% for true X-ALD. Our findings further suggested a cutoff of < 0.02 for the ratio C26:0/C22:0 leading to a sensitivity of 90.9%, a specificity of 95.0%, and a PPV of 80.6%. Pearson correlation indicated a significant positive association between total blood cholesterol and VLCFA values. Usage of serum VLCFA are economical and established biomarkers suitable for the guidance of genetic testing matching the X-ALD phenotype. We suggest using our new optimized cutoff values, especially the two ratios (C24:0/C22:0 and C26:0/C22:0), in combination with standard lipid profiles.

7.
Orphanet J Rare Dis ; 15(1): 243, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912261

RESUMO

BACKGROUND: Krabbe disease or globoid cell leukodystrophy is a severe neurodegenerative disorder caused by a defect in the GALC gene leading to a deficiency of the enzyme ß-galactocerebrosidase. The aim of this work was to describe the natural disease course covering the whole spectrum of the disease. METHODS: Natural history data were collected with a standardized questionnaire, supplemented by medical record data. We defined different forms of the disease according to Abdelhalim et al. (2014). Developmental and disease trajectories were described based on the acquisition and loss of milestones as well as the time of first clearly identifiable symptoms and needs such as spasticity, seizures and tube feeding. MRI was assessed using the scoring system by Loes et al. (1999) and in addition a pattern recognition approach, based on Abdelhalim et al. (2014). RESULTS: Thirty-eight patients were identified, from 27 of these patients 40 MRIs were available; 30 (79%) had an infantile onset, showing first symptoms in their first year of life, almost all (27 out of 30) starting in the first six months. A later onset after the first year of life was observed in 8 patients (21%, range 18 months to 60 years). Irritability, abnormalities in movement pattern as well as general developmental regression were the first symptoms in the infantile group; disease course was severe with rapid progression, e.g. loss of visual fixation, need for tube feeding and then an early death. Gait disorders were the first symptoms in all patients of the later onset groups; progression was variable. The different forms of the disease were characterized by different MRI patterns (infantile: diffuse white matter involvement and cerebellar structures specifically affected, later onset: parieto-occipital white matter and splenium affected, adult: motor tracts specifically affected). CONCLUSION: This is the first description of the natural history of Krabbe disease in a larger European cohort using developmental, clinical and MRI data. We would like to highlight the very different clinical and MRI characteristics of the later onset forms. These data are important for counselling affected patients and families and may serve as a basis for future treatment trials.

8.
Orphanet J Rare Dis ; 15(1): 198, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746884

RESUMO

BACKGROUND: In rare disorders diagnosis may be delayed due to limited awareness and unspecific presenting symptoms. Herein, we address the issue of diagnostic delay in Friedreich's Ataxia (FRDA), a genetic disorder usually caused by homozygous GAA-repeat expansions. METHODS: Six hundred eleven genetically confirmed FRDA patients were recruited within a multicentric natural history study conducted by the EFACTS (European FRDA Consortium for Translational Studies, ClinicalTrials.gov -Identifier NCT02069509). Age at first symptoms as well as age at first suspicion of FRDA by a physician were collected retrospectively at the baseline visit. RESULTS: In 554 of cases (90.7%), disease presented with gait or coordination disturbances. In the others (n = 57, 9.3%), non-neurological features such as scoliosis or cardiomyopathy predated ataxia. Before the discovery of the causal mutation in 1996, median time to diagnosis was 4(IQR = 2-9) years and it improved significantly after the introduction of genetic testing (2(IQR = 1-5) years, p < 0.001). Still, after 1996, time to diagnosis was longer in patients with a) non-neurological presentation (mean 6.7, 95%CI [5.5,7.9] vs 4.5, [4.2,5] years in those with neurological presentation, p = 0.001) as well as in b) patients with late-onset (3(IQR = 1-7) vs 2(IQR = 1-5) years compared to typical onset < 25 years of age, p = 0.03). Age at onset significantly correlated with the length of the shorter GAA repeat (GAA1) in case of neurological onset (r = - 0,6; p < 0,0001), but not in patients with non-neurological presentation (r = - 0,1; p = 0,4). Across 54 siblings' pairs, differences in age at onset did not correlate with differences in GAA-repeat length (r = - 0,14, p = 0,3). CONCLUSIONS: In the genetic era, presentation with non-neurological features or in the adulthood still leads to a significant diagnostic delay in FRDA. Well-known correlations between GAA1 repeat length and disease milestones are not valid in case of atypical presentations or positive family history.

9.
Lancet Neurol ; 19(9): 738-747, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32822634

RESUMO

BACKGROUND: Spinocerebellar ataxias (SCAs) are autosomal dominant neurodegenerative diseases. Our aim was to study the conversion to manifest ataxia among apparently healthy carriers of mutations associated with the most common SCAs (SCA1, SCA2, SCA3, and SCA6), and the sensitivity of clinical and functional measures to detect change in these individuals. METHODS: In this prospective, longitudinal, observational cohort study, based at 14 referral centres in seven European countries, we enrolled children or siblings of patients with SCA1, SCA2, SCA3, or SCA6. Eligible individuals were those without ataxia, defined by a score on the Scale for the Assessment and Rating of Ataxia (SARA) of less than 3; participants had to be aged 18-50 years for children or siblings of patients with SCA1, SCA2, or SCA3, and 35-70 years for children or siblings of patients with SCA6. Study visits took place at recruitment and after 2, 4, and 6 years (plus or minus 3 months). We did genetic testing to identify mutation carriers, with results concealed to the participant and clinical investigator. We assessed patients with clinical scales, questionnaires of patient-reported outcome measures, a rating of the examiner's confidence of presence of ataxia, and performance-based coordination tests. Conversion to ataxia was defined by an SARA score of 3 or higher. We analysed the association of factors at baseline with conversion to ataxia and the evolution of outcome parameters on temporal scales (time from inclusion and time to predicted age at ataxia onset) in the context of mutation status and conversion status. This study is registered with ClinicalTrials.gov, NCT01037777. FINDINGS: Between Sept 13, 2008, and Oct 28, 2015, 302 participants were enrolled. We analysed data for 252 participants with at least one follow-up visit. 83 (33%) participants were from families affected by SCA1, 99 (39%) by SCA2, 46 (18%) by SCA3, and 24 (10%) by SCA6. In participants who carried SCA mutations, 26 (52%) of 50 SCA1 carriers, 22 (59%) of 37 SCA2 carriers, 11 (42%) of 26 SCA3 carriers, and two (13%) of 15 SCA6 carriers converted to ataxia. One (3%) of 33 SCA1 non-carriers and one (2%) of 62 SCA2 non-carriers converted to ataxia. Owing to the small number of people who met our criteria for ataxia, subsequent analyses could not be done in carriers of the SCA6 mutation. Baseline factors associated with conversion were age (hazard ratio 1·13 [95% CI 1·03-1·24]; p=0·011), CAG repeat length (1·25 [1·11-1·41]; p=0·0002), and ataxia confidence rating (1·72 [1·23-2·41]; p=0·0015) for SCA1; age (1·08 [1·02-1·14]; p=0·0077) and CAG repeat length (1·65 [1·27-2·13]; p=0·0001) for SCA2; and age (1·27 [1·09-1·50]; p=0·0031), confidence rating (2·60 [1·23-5·47]; p=0·012), and double vision (14·83 [2·15-102·44]; p=0·0063) for SCA3. From the time of inclusion, the SARA scores of SCA1, SCA2, and SCA3 mutation carriers increased, whereas they remained stable in non-carriers. On a timescale defined by the predicted time of ataxia onset, SARA progression in SCA1, SCA2, and SCA3 mutation carriers was non-linear, with marginal progression before ataxia and increasing progression after ataxia onset. INTERPRETATION: Our study provides quantitative data on the conversion of non-ataxic SCA1, SCA2, and SCA3 mutation carriers to manifest ataxia. Our data could prove useful for the design of preventive trials aimed at delaying the onset of ataxia by aiding sample size calculations and stratification of study participants. FUNDING: European Research Area Network for Research Programmes on Rare Diseases, Polish Ministry of Science and Higher Education, Italian Ministry of Health, European Community's Seventh Framework Programme.


Assuntos
Progressão da Doença , Mutação/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Adulto , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
10.
Neurology ; 95(9): e1199-e1210, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611635

RESUMO

OBJECTIVES: With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid motor biomarkers are highly warranted. In this observational study, we aimed to unravel and validate markers of ataxic gait in real life by using wearable sensors. METHODS: We assessed gait characteristics of 43 patients with degenerative cerebellar disease (Scale for the Assessment and Rating of Ataxia [SARA] 9.4 ± 3.9) compared with 35 controls by 3 body-worn inertial sensors in 3 conditions: (1) laboratory-based walking; (2) supervised free walking; (3) real-life walking during everyday living (subgroup n = 21). Movement analysis focused on measures of spatiotemporal step variability and movement smoothness. RESULTS: A set of gait variability measures was identified that allowed us to consistently identify ataxic gait changes in all 3 conditions. Lateral step deviation and a compound measure of spatial step variability categorized patients vs controls with a discrimination accuracy of 0.86 in real life. Both were highly correlated with clinical ataxia severity (effect size ρ = 0.76). These measures allowed detecting group differences even for patients who differed only 1 point in the clinical SARAposture&gait subscore, with highest effect sizes for real-life walking (d = 0.67). CONCLUSIONS: We identified measures of ataxic gait that allowed us not only to capture the gait variability inherent in ataxic gait in real life, but also to demonstrate high sensitivity to small differences in disease severity, with the highest effect sizes in real-life walking. They thus represent promising candidates for motor markers for natural history and treatment trials in ecologically valid contexts. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that a set of gait variability measures, even if accessed in real life, correlated with the clinical severity of ataxia in patients with degenerative cerebellar disease.


Assuntos
Análise da Marcha/métodos , Ataxias Espinocerebelares/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Ataxia Telangiectasia/fisiopatologia , Feminino , Análise da Marcha/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural , Índice de Gravidade de Doença , Caminhada , Adulto Jovem
11.
EMBO Mol Med ; 12(7): e11803, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510847

RESUMO

With molecular treatments coming into reach for spinocerebellar ataxia type 3 (SCA3), easily accessible, cross-species validated biomarkers for human and preclinical trials are warranted, particularly for the preataxic disease stage. We assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in ataxic and preataxic subjects of two independent multicentric SCA3 cohorts and in a SCA3 knock-in mouse model. Ataxic SCA3 subjects showed increased levels of both NfL and pNfH. In preataxic subjects, NfL levels increased with proximity to the individual expected onset of ataxia, with significant NfL elevations already 7.5 years before onset. Cross-sectional NfL levels correlated with both disease severity and longitudinal disease progression. Blood NfL and pNfH increases in human SCA3 were each paralleled by similar changes in SCA3 knock-in mice, here also starting already at the presymptomatic stage, closely following ataxin-3 aggregation and preceding Purkinje cell loss in the brain. Blood neurofilaments, particularly NfL, might thus provide easily accessible, cross-species validated biomarkers in both ataxic and preataxic SCA3, associated with earliest neuropathological changes, and serve as progression, proximity-to-onset and, potentially, treatment-response markers in both human and preclinical SCA3 trials.

12.
Clin Neurophysiol ; 131(8): 1798-1803, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32531740

RESUMO

OBJECTIVE: To characterize peripheral nerve morphology in cerebrotendinous xanthomatosis (CTX) patients using high-resolution ultrasound (HRUS) in vivo. We hypothesized that nerve enlargements might be present in CTX as a result of accumulation of abnormal lipids with deposition also in peripheral nerves. METHODS: Four CTX patients were examined using HRUS to assess morphological abnormalities of peripheral nerves as well as cervical nerve roots 5 and 6. RESULTS: HRUS revealed mild to moderate, hypoechogenic thickening of sensorimotor nerves (ulnar nerve in 1/4, tibial nerve in 3/4, median nerve 4/4 patients) as well as mild enlargement of pure sensory nerves (sural nerve in 2/3, superficial FN in 2/4 patients). The vagal nerve was moderately enlarged in one patient, cervical roots showed moderate enlargements of C5 in two patients, one of which also showing thickening of C6 as well as in another patient. UPSS score was slightly to moderately abnormal in all patients. The Homogeneity score was not increased suggesting regional to inhomogeneous nerve enlargement. CONCLUSIONS: HRUS shows multifocal, hypoechogenic nerve thickening of peripheral nerves and nerve roots in CTX. SIGNIFICANCE: HRUS might serve as a valuable, additive and non-invasive bedside tool to assess peripheral nerve morphology in future clinical studies on CTX patients.

13.
Sci Rep ; 10(1): 8391, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439941

RESUMO

Loss of function mutations of the chorein-encoding gene VPS13A lead to chorea-acanthocytosis (ChAc), a neurodegenerative disorder with accelerated suicidal neuronal cell death, which could be reversed by lithium. Chorein upregulates the serum and glucocorticoid inducible kinase SGK1. Targets of SGK1 include the Na+/K+-ATPase, a pump required for cell survival. To explore whether chorein-deficiency affects Na+/K+ pump capacity, cortical neurons were differentiated from iPSCs generated from fibroblasts of ChAc patients and healthy volunteers. Na+/K+ pump capacity was estimated from K+-induced whole cell outward current (pump capacity). As a result, the pump capacity was completely abolished in the presence of Na+/K+ pump-inhibitor ouabain (100 µM), was significantly smaller in ChAc neurons than in control neurons, and was significantly increased in ChAc neurons by lithium treatment (24 hours 2 mM). The effect of lithium was reversed by SGK1-inhibitor GSK650394 (24 h 10 µM). Transmembrane potential (Vm) was significantly less negative in ChAc neurons than in control neurons, and was significantly increased in ChAc neurons by lithium treatment (2 mM, 24 hours). The effect of lithium on Vm was virtually abrogated by ouabain. Na+/K+ α1-subunit transcript levels and protein abundance were significantly lower in ChAc neurons than in control neurons, an effect reversed by lithium treatment (2 mM, 24 hours). In conclusion, consequences of chorein deficiency in ChAc include impaired Na+/K+ pump capacity.

14.
J Neuromuscul Dis ; 7(3): 301-308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32444556

RESUMO

BACKGROUND: In 2009, we identified TACO1 as a novel mitochondrial disease gene in a single family, however no second family has been described to confirm the role of TACO1 in mitochondrial disease. OBJECTIVE: In this report, we describe two independent consanguineous families carrying pathogenic variants in TACO1, confirming the phenotype. METHODS: Detailed clinical investigations and whole exome sequencing with haplotype analysis have been performed in several members of the two reported families. RESULTS: Clinical phenotype of the patients confirms the originally reported phenotype of a childhood-onset progressive cerebellar and pyramidal syndrome with optic atrophy and learning difficulties. Brain MRI showed periventricular white matter lesions with multiple cystic defects, suggesting leukoencephalopathy in both patients. One patient carried the previously described homozygous TACO1 variant (p.His158ProfsTer8) and haplotype analysis suggested that this variant is a rare founder mutation. The second patient from another family carried a homozygous novel frame shift variant (p.Cys85PhefsTer15). CONCLUSIONS: The identification of two Turkish families with similar characteristic clinical presentation and an additional homozygous nonsense mutation confirms that TACO1 is a human mitochondrial disease gene. Although most patients with this clinical presentation undergo next generation sequencing analysis, screening for selected founder mutations in the Turkish population based on the precise clinical presentation may reduce time and cost of finding the genetic diagnosis even in the era of massively parallel sequencing.

15.
Ann Neurol ; 88(2): 251-263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32337771

RESUMO

OBJECTIVE: To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS: Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS: Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION: This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.

16.
Parkinsonism Relat Disord ; 74: 6-11, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32268254

RESUMO

BACKGROUND: Charcot-Marie-Tooth disease type 4J (CMT4J) originates from mutations in the FIG4 gene and leads to distal muscle weakness. Two null alleles of FIG4 cause Yunis Varón syndrome with severe central nervous system involvement, cleidocranial dysmorphism, absent thumbs and halluces and early death. OBJECTIVES: To analyse the phenotypic spectrum of FIG4-related disease and explore effects of residual FIG4 protein. METHODS: Phenotyping of five new patients with FIG4-related disease. Western Blot analyses of FIG4 from patient fibroblasts. RESULTS: Next generation sequencing revealed compound heterozygous variants in FIG4 in five patients. All five patients presented with peripheral neuropathy, various degree of dysmorphism and a central nervous system involvement comprising Parkinsonism in 3/5 patients, cerebellar ataxia (1/5), spasticity of lower limbs (1/5), epilepsy (1/5) and/or cognitive deficits (2/5). Onset varied between the first and the seventh decade. There was no residual FIG4 protein detectable in fibroblasts of the four analysed patients. CONCLUSION: This study extends the phenotypic spectrum of FIG4-related disease to Parkinsonism as a feature and demonstrates new phenotypes on a continuum between CMT4J and Yunis Varón syndrome.

17.
Eur J Hum Genet ; 28(8): 1034-1043, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32214227

RESUMO

A high rate of consanguinity leads to a high prevalence of autosomal recessive disorders in inbred populations. One example of inbred populations is the Arab communities in Israel and the Palestinian Authority. In the Palestinian Authority in particular, due to limited access to specialized medical care, most patients do not receive a genetic diagnosis and can therefore neither receive genetic counseling nor possibly specific treatment. We used whole-exome sequencing as a first-line diagnostic tool in 83 Palestinian and Israeli Arab families with suspected neurogenetic disorders and were able to establish a probable genetic diagnosis in 51% of the families (42 families). Pathogenic, likely pathogenic or highly suggestive candidate variants were found in the following genes extending and refining the mutational and phenotypic spectrum of these rare disorders: ACO2, ADAT3, ALS2, AMPD2, APTX, B4GALNT1, CAPN1, CLCN1, CNTNAP1, DNAJC6, GAMT, GPT2, KCNQ2, KIF11, LCA5, MCOLN1, MECP2, MFN2, MTMR2, NT5C2, NTRK1, PEX1, POLR3A, PRICKLE1, PRKN, PRX, SCAPER, SEPSECS, SGCG, SLC25A15, SPG11, SYNJ1, TMCO1, and TSEN54. Further, this cohort has proven to be ideal for prioritization of new disease genes. Two separately published candidate genes (WWOX and PAX7) were identified in this study. Analyzing the runs of homozygosity (ROHs) derived from the Exome sequencing data as a marker for the rate of inbreeding, revealed significantly longer ROHs in the included families compared with a German control cohort. The total length of ROHs correlated with the detection rate of recessive disease-causing variants. Identification of the disease-causing gene led to new therapeutic options in four families.

18.
Ann Neurol ; 88(1): 18-32, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219868

RESUMO

OBJECTIVE: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION: This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.


Assuntos
Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , GTP Fosfo-Hidrolases/genética , Atrofia Óptica/genética , Doenças do Nervo Óptico/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Sequenciamento Completo do Exoma , Adulto Jovem
19.
Neurol Genet ; 6(1): e393, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32042921

RESUMO

Objective: To delineate the phenotypic and genotypic spectrum in carriers of mitochondrial MT-ATP6 mutations in a large international cohort. Methods: We analyzed in detail the clinical, genetical, and neuroimaging data from 132 mutation carriers from national registries and local databases from Europe, USA, Japan, and China. Results: We identified 113 clinically affected and 19 asymptomatic individuals with a known pathogenic MT-ATP6 mutation. The most frequent mutations were m.8993 T > G (53/132, 40%), m.8993 T > C (30/132, 23%), m.9176 T > C (30/132, 23%), and m.9185 T > C (12/132, 9%). The degree of heteroplasmy was high both in affected (mean 95%, range 20%-100%) and unaffected individuals (mean 73%, range 20%-100%). Age at onset ranged from prenatal to the age of 75 years, but almost half of the patients (49/103, 48%) became symptomatic before their first birthday. In 28 deceased patients, the median age of death was 14 months. The most frequent symptoms were ataxia (81%), cognitive dysfunction (49%), neuropathy (48%), seizures (37%), and retinopathy (14%). A diagnosis of Leigh syndrome was made in 55% of patients, whereas the classic syndrome of neuropathy, ataxia, and retinitis pigmentosa (NARP) was rare (8%). Conclusions: In this currently largest series of patients with mitochondrial MT-ATP6 mutations, the phenotypic spectrum ranged from asymptomatic to early onset multisystemic neurodegeneration. The degree of mutation heteroplasmy did not reliably predict disease severity. Leigh syndrome was found in more than half of the patients, whereas classic NARP syndrome was rare. Oligosymptomatic presentations were rather frequent in adult-onset patients, indicating the need to include MT-ATP6 mutations in the differential diagnosis of both ataxias and neuropathies.

20.
J Neurol ; 267(5): 1420-1430, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32002649

RESUMO

OBJECTIVE: To assess neurofilaments as neurodegenerative biomarkers in serum of patients with Friedreich's ataxia. METHODS: Single molecule array measurements of neurofilament light (NfL) and heavy chain (pNfH) in 99 patients with genetically confirmed Friedreich's ataxia. Correlation of NfL/pNfH serum levels with disease severity, disease duration, age, age at onset, and GAA repeat length. RESULTS: Median serum levels of NfL were 21.2 pg/ml (range 3.6-49.3) in controls and 26.1 pg/ml (0-78.1) in Friedreich's ataxia (p = 0.002). pNfH levels were 23.5 pg/ml (13.3-43.3) in controls and 92 pg/ml (3.1-303) in Friedreich's ataxia (p = 0.0004). NfL levels were significantly increased in younger patients (age 16-31 years, p < 0.001) and patients aged 32-47 years (p = 0.008), but not in patients of age 48 years and older (p = 0.41). In a longitudinal assessment, there was no difference in NfL levels in 14 patients with repeated sampling 2 years after baseline measurement. Levels of NfL correlated inversely with GAA1 repeat length (r = - 0.24, p = 0.02) but not with disease severity (r = - 0.13, p = 0.22), disease duration (r = - 0.06, p = 0.53), or age at onset (r = 0.05, p = 0.62). CONCLUSION: Serum levels of NfL and pNfH are elevated in Friedreich's ataxia, but differences to healthy controls decrease with increasing age. Long-term longitudinal data are required to explore whether this reflects a selection bias from early death of more severely affected individuals or a slowing down of the neurodegenerative process with age. In a pilot study over 2 years of follow-up-a period relevant for biomarkers indicating treatment effects-we found NfL levels to be stable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA