Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 7: 593, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552216

RESUMO

Sensors composed of a porous silicon monolayer covered with a film of nanostructured gold layer, which provide two optical signal transduction methods, are fabricated and thoroughly characterized concerning their sensing performance. For this purpose, silicon substrates were electrochemically etched in order to obtain porous silicon monolayers, which were subsequently immersed in gold salt solution facilitating the formation of a porous gold nanoparticle layer on top of the porous silicon. The deposition process was monitored by reflectance spectroscopy, and the appearance of a dip in the interference pattern of the porous silicon layer was observed. This dip can be assigned to the absorption of light by the deposited gold nanostructures leading to localized surface plasmon resonance. The bulk sensitivity of these sensors was determined by recording reflectance spectra in media having different refractive indices and compared to sensors exclusively based on porous silicon or gold nanostructures. A thorough analysis of resulting shifts of the different optical signals in the reflectance spectra on the wavelength scale indicated that the optical response of the porous silicon sensor is not influenced by the presence of a gold nanostructure on top. Moreover, the adsorption of thiol-terminated polystyrene to the sensor surface was solely detected by changes in the position of the dip in the reflectance spectrum, which is assigned to localized surface plasmon resonance in the gold nanostructures. The interference pattern resulting from the porous silicon layer is not shifted to longer wavelengths by the adsorption indicating the independence of the optical response of the two nanostructures, namely porous silicon and nanostructured gold layer, to refractive index changes and pointing to the successful realization of two sensors in one spot.

2.
J Phys Chem Lett ; 10(11): 3153-3158, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31117676

RESUMO

Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system.

3.
Chemphyschem ; 20(6): 823-830, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30719805

RESUMO

DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3×10-16  cm2 . The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold.


Assuntos
Quebras de DNA/efeitos da radiação , DNA/genética , DNA/efeitos da radiação , Elétrons , Raios Ultravioleta , Sequência de Bases , DNA/química , Fótons , Vácuo
4.
Phys Chem Chem Phys ; 21(4): 1972-1979, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30633275

RESUMO

Radiation therapy is a basic part of cancer treatment. To increase the DNA damage in carcinogenic cells and preserve healthy tissue at the same time, radiosensitizing molecules such as halogenated nucleobase analogs can be incorporated into the DNA during the cell reproduction cycle. In the present study 8.44 eV photon irradiation induced single strand breaks (SSB) in DNA sequences modified with the radiosensitizer 5-bromouracil (5BrU) and 8-bromoadenine (8BrA) are investigated. 5BrU was incorporated in the 13mer oligonucleotide flanked by different nucleobases. It was demonstrated that the highest SSB cross sections were reached, when cytosine and thymine were adjacent to 5BrU, whereas guanine as a neighboring nucleobase decreases the activity of 5BrU indicating that competing reaction mechanisms are active. This was further investigated with respect to the distance of guanine to 5BrU separated by an increasing number of adenine nucleotides. It was observed that the SSB cross sections were decreasing with an increasing number of adenine spacers between guanine and 5BrU until the SSB cross sections almost reached the level of a non-modified DNA sequence, which demonstrates the high sequence dependence of the sensitizing effect of 5BrU. 8BrA was incorporated in a 13mer oligonucleotide as well and the strand breaks were quantified upon 8.44 eV photon irradiation in direct comparison to a non-modified DNA sequence of the same composition. No clear enhancement of the SSB yield of the modified in comparison to the non-modified DNA sequence could be observed. Additionally, secondary electrons with a maximum energy of 3.6 eV were generated when using Si as a substrate giving rise to further DNA damage. A clear enhancement in the SSB yield can be ascertained, but to the same degree for both the non-modified DNA sequence and the DNA sequence modified with 8BrA.


Assuntos
Adenina/análogos & derivados , Bromouracila , Dano ao DNA/efeitos da radiação , Radiossensibilizantes , Adenina/química , Bromouracila/química , Dano ao DNA/efeitos dos fármacos , Radiossensibilizantes/química , Raios Ultravioleta , Vácuo
5.
Chemistry ; 24(41): 10271-10279, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29522244

RESUMO

High-energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low-energy electrons generated along the radiation track of the high-energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico-chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico-chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts.


Assuntos
DNA/efeitos da radiação , Neoplasias/radioterapia , Radiossensibilizantes/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Cisplatino/química , Cisplatino/uso terapêutico , DNA/metabolismo , Dano ao DNA , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nucleosídeos/química , Nucleosídeos/uso terapêutico , Radiossensibilizantes/uso terapêutico , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico
6.
Phys Chem Chem Phys ; 20(8): 5578-5585, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29410988

RESUMO

2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) and ethylenediaminetetraacetic acid (EDTA) are key components of biological buffers and are frequently used as DNA stabilizers in irradiation studies. Such surface or liquid phase studies are done with the aim to understand the fundamental mechanisms of DNA radiation damage and to improve cancer radiotherapy. When ionizing radiation is used, abundant secondary electrons are formed during the irradiation process, which are able to attach to the molecular compounds present on the surface. In the present study we experimentally investigate low energy electron attachment to TRIS and methyliminodiacetic acid (MIDA), an analogue of EDTA, supported by quantum chemical calculations. The most prominent dissociation channel for TRIS is through hydroperoxyl radical formation, whereas the dissociation of MIDA results in the formation of formic and acetic acid. These compounds are well-known to cause DNA modifications, like strand breaks. The present results indicate that buffer compounds may not have an exclusive protecting effect on DNA as suggested previously.


Assuntos
DNA/química , Elétrons , Formiatos/síntese química , Peróxidos/síntese química , Teoria Quântica , Formiatos/química , Radicais Livres/síntese química , Radicais Livres/química , Conformação de Ácido Nucleico , Peróxidos/química , Termodinâmica
7.
Angew Chem Int Ed Engl ; 56(36): 10952-10955, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28670830

RESUMO

Halogenated nucleobases are used as radiosensitizers in cancer radiation therapy, enhancing the reactivity of DNA to secondary low-energy electrons (LEEs). LEEs induce DNA strand breaks at specific energies (resonances) by dissociative electron attachment (DEA). Although halogenated nucleobases show intense DEA resonances at various electron energies in the gas phase, it is inherently difficult to investigate the influence of halogenated nucleobases on the actual DNA strand breakage over the broad range of electron energies at which DEA can take place (<12 eV). By using DNA origami nanostructures, we determined the energy dependence of the strand break cross-section for oligonucleotides modified with 8-bromoadenine (8Br A). These results were evaluated against DEA measurements with isolated 8Br A in the gas phase. Contrary to expectations, the major contribution to strand breaks is from resonances at around 7 eV while resonances at very low energy (<2 eV) have little influence on strand breaks.


Assuntos
DNA/química , Elétrons , Quebras de DNA de Cadeia Dupla
8.
J Phys Chem B ; 121(23): 5730-5734, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28525718

RESUMO

8-Bromoadenine (8BrA) is a potential DNA radiosensitizer for cancer radiation therapy due to its efficient interaction with low-energy electrons (LEEs). LEEs are a short-living species generated during the radiation damage of DNA by high-energy radiation as it is applied in cancer radiation therapy. Electron attachment to 8BrA in the gas phase results in a stable parent anion below 3 eV electron energy in addition to fragmentation products formed by resonant exocyclic bond cleavages. Density functional theory (DFT) calculations of the 8BrA- anion reveal an exotic bond between the bromine and the C8 atom with a bond length of 2.6 Å, where the majority of the charge is located on bromine and the spin is mainly located on the C8 atom. The detailed understanding of such long-lived anionic states of nucleobase analogues supports the rational development of new therapeutic agents, in which the enhancement of dissociative electron transfer to the DNA backbone is critical to induce DNA strand breaks in cancerous tissue.

9.
Phys Chem Chem Phys ; 19(17): 10796-10803, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28244511

RESUMO

Photothermal therapy is a novel approach to destroy cancer cells by an increase of temperature due to laser illumination of gold nanoparticles (GNPs) that are incorporated into the cells. Here, we study the decomposition of DNA nucleobases via irradiation of gold nanoparticles with ns-laser pulses. The kinetics of the adsorption and decomposition process is described by a theoretical model based on the Langmuir assumptions and correlated with experimentally determined reaction rates revealing a strong influence of the nucleobase specific adsorption. Beside the four nucleobases, their brominated analogs, which are potential radiosensitizers in cancer therapy, are also investigated and show a significant modification of the decomposition rates. The fastest decomposition rates are observed for adenine, 8-bromoadenine, 8-bromoguanine and 5-bromocytosine. These results are in good agreement with the relative adsorption rates that are determined from the aggregation kinetics of the GNPs taking the effect of an inhomogeneous surface into account. For adenine and its brominated analog, the decomposition products are further analyzed by surface enhanced Raman scattering (SERS) indicating a strong fragmentation of the molecules into their smallest subunits.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Modelos Químicos , Adsorção , DNA/metabolismo , Cinética , Lasers , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA