Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360992

RESUMO

Several protocols exist for generating megakaryocytes (MKs) and platelets from human induced pluripotent stem cells (hiPSCs) with limited efficiency. We observed previously that mesoderm induction improved endothelial and stromal differentiation. We, therefore, hypothesized that a protocol modification prior to hemogenic endothelial cell (HEC) differentiation will improve MK progenitor (MKP) production and increase platelet output. We further asked if basic media composition affects MK maturation. In an iterative process, we first compared two HEC induction protocols. We found significantly more HECs using the modified protocol including activin A and CHIR99021, resulting in significantly increased MKs. MKs released comparable platelet amounts irrespective of media conditions. In a final validation phase, we obtained five-fold more platelets per hiPSC with the modified protocol (235 ± 84) compared to standard conditions (51 ± 15; p < 0.0001). The regenerative potency of hiPSC-derived platelets was compared to adult donor-derived platelets by profiling angiogenesis-related protein expression. Nineteen of 24 angiogenesis-related proteins were expressed equally, lower or higher in hiPSC-derived compared to adult platelets. The hiPSC-platelet's coagulation hyporeactivity compared to adult platelets was confirmed by thromboelastometry. Further stepwise improvement of hiPSC-platelet production will, thus, permit better identification of platelet-mediated regenerative mechanisms and facilitate manufacture of sufficient amounts of functional platelets for clinical application.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Técnicas de Reprogramação Celular/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Megacariócitos/citologia , Células Cultivadas , Meios de Cultura/química , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
2.
Theranostics ; 11(17): 8430-8447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373751

RESUMO

Self-assembly of solid organs from single cells would greatly expand applicability of regenerative medicine. Stem/progenitor cells can self-organize into micro-sized organ units, termed organoids, partially modelling tissue function and regeneration. Here we demonstrated 3D self-assembly of adult and induced pluripotent stem cell (iPSC)-derived fibroblasts, keratinocytes and endothelial progenitors into both, planar human skin in vivo and a novel type of spheroid-shaped skin organoids in vitro, under the aegis of human platelet lysate. Methods: Primary endothelial colony forming cells (ECFCs), skin fibroblasts (FBs) and keratinocytes (KCs) were isolated from human tissues and polyclonally propagated under 2D xeno-free conditions. Human tissue-derived iPSCs were differentiated into endothelial cells (hiPSC-ECs), fibroblasts (hiPSC-FBs) and keratinocytes (hiPSC-KCs) according to efficiency-optimized protocols. Cell identity and purity were confirmed by flow cytometry and clonogenicity indicated their stem/progenitor potential. Triple cell type floating spheroids formation was promoted by human platelet-derived growth factors containing culture conditions, using nanoparticle cell labelling for monitoring the organization process. Planar human skin regeneration was assessed in full-thickness wounds of immune-deficient mice upon transplantation of hiPSC-derived single cell suspensions. Results: Organoids displayed a distinct architecture with surface-anchored keratinocytes surrounding a stromal core, and specific signaling patterns in response to inflammatory stimuli. FGF-7 mRNA transfection was required to accelerate keratinocyte long-term fitness. Stratified human skin also self-assembled within two weeks after either adult- or iPSC-derived skin cell-suspension liquid-transplantation, healing deep wounds of mice. Transplant vascularization significantly accelerated in the presence of co-transplanted endothelial progenitors. Mechanistically, extracellular vesicles mediated the multifactorial platelet-derived trophic effects. No tumorigenesis occurred upon xenografting. Conclusion: This illustrates the superordinate progenitor self-organization principle and permits novel rapid 3D skin-related pharmaceutical high-content testing opportunities with floating spheroid skin organoids. Multi-cell transplant self-organization facilitates development of iPSC-based organ regeneration strategies using cell suspension transplantation supported by human platelet factors.

3.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068404

RESUMO

Numerous cell-based therapeutics are currently being tested in clinical trials. Human platelet lysate (HPL) is a valuable alternative to fetal bovine serum as a cell culture medium supplement for a variety of different cell types. HPL as a raw material permits animal serum-free cell propagation with highly efficient stimulation of cell proliferation, enabling humanized manufacturing of cell therapeutics within a reasonable timeframe. Providers of HPL have to consider dedicated quality issues regarding identity, purity, potency, traceability and safety. Release criteria have to be defined, characterizing the suitability of HPL batches for the support of a specific cell culture. Fresh or expired platelet concentrates from healthy blood donors are the starting material for HPL preparation, according to regulatory requirements. Pooling of individual platelet lysate units into one HPL batch can balance donor variation with regard to essential platelet-derived growth factors and cytokines. The increasingly applied pathogen reduction technologies will further increase HPL safety. In this review article, aspects and regulatory requirements of whole blood donation and details of human platelet lysate manufacturing are presented. International guidelines for raw materials are discussed, and defined quality controls, as well as release criteria for safe and GMP-compliant HPL production, are summarized.


Assuntos
Plaquetas/citologia , Técnicas de Cultura de Células/normas , Diferenciação Celular , Animais , Proliferação de Células , Meios de Cultura , Humanos
4.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918735

RESUMO

Stem cells secrete paracrine factors including extracellular vesicles (EVs) which can mediate cellular communication and support the regeneration of injured tissues. Reduced oxygen (hypoxia) as a key regulator in development and regeneration may influence cellular communication via EVs. We asked whether hypoxic conditioning during human induced pluripotent stem cell (iPSC) culture effects their EV quantity, quality or EV-based angiogenic potential. We produced iPSC-EVs from large-scale culture-conditioned media at 1%, 5% and 18% air oxygen using tangential flow filtration (TFF), with or without subsequent concentration by ultracentrifugation (TUCF). EVs were quantified by tunable resistive pulse sensing (TRPS), characterized according to MISEV2018 guidelines, and analyzed for angiogenic potential. We observed superior EV recovery by TFF compared to TUCF. We confirmed hypoxia efficacy by HIF-1α stabilization and pimonidazole hypoxyprobe. EV quantity did not differ significantly at different oxygen conditions. Significantly elevated angiogenic potential was observed for iPSC-EVs derived from 1% oxygen culture by TFF or TUCF as compared to EVs obtained at higher oxygen or the corresponding EV-depleted soluble factor fractions. Data thus demonstrate that cell-culture oxygen conditions and mode of EV preparation affect iPSC-EV function. We conclude that selecting appropriate protocols will further improve production of particularly potent iPSC-EV-based therapeutics.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neovascularização Fisiológica , Transporte Biológico , Biomarcadores , Hipóxia Celular , Autorrenovação Celular , Células Cultivadas , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Medicina Regenerativa/métodos
5.
Sci Rep ; 11(1): 5944, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723276

RESUMO

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.

6.
Cytometry A ; 99(5): 476-487, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32542988

RESUMO

Culture-expanded mesenchymal stromal cells (MSCs) are promising candidates for clinical cell-based therapies. MSC products are heterogeneous and we therefore investigated whether acoustophoresis, an ultrasound-based separation technology, could be used for the label-free enrichment of functionally different MSC populations. Acoustophoresis uses an ultrasonic standing wave field in a microchannel that differentially affects the movement of cells depending on their acoustophysical properties, such as size, density, and compressibility. Human bone marrow (BM) MSCs were generated by standard adherent culture in xeno-free medium and separated by microchip acoustophoresis. MSCs with up to 20% higher proliferation and 1.7-fold increased clonogenic potential were enriched in the side outlet of the chip compared to the input sample. These cells were significantly smaller (average diameter 14.5 ± 0.4 µm) compared to the center outlet fraction (average diameter 17.1 ± 0.6 µm) and expressed higher levels of genes related to proliferation and stem cell properties (i.e., Ki-67 [1.9-fold], Nanog1 [6.65-fold], Oct4 [2.9-fold], and CXCL12 [1.8-fold], n = 3) in the side outlet compared to input. Fractions of MSCs in G0 /G1 cell cycle phase were significantly enriched in the side fraction and an up to 2.8-fold increase of cells in S/G2 /M phases were observed in center fractions compared to side fractions and 1.3-fold increased compared to the input sample. Acoustophoresis did not compromise MSC phenotype, proliferation, clonogenic capacity, and viability (generally 87-98%), nor did it affect differentiation or immunomodulatory capacities. These results demonstrate that label-free acoustic separation can enrich functionally different MSC subsets which can potentially be employed to produce better-defined stromal cell products from cultured MSCs. Hence, acoustophoresis is a potentially promising separation technology to provide improved cell products for research and possible future clinical use. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.

7.
J Mol Med (Berl) ; 98(2): 193-207, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31863152

RESUMO

During histiotrophic nutrition of the embryo, maternal platelets may be the first circulating maternal cells that find their way into the placental intervillous space through narrow intertrophoblastic gaps within the plugs of spiral arteries. Activation of platelets at the maternal-fetal interface can influence trophoblast behavior and has been implicated in serious pregnancy pathologies. Here, we show that platelet-derived factors impaired expression and secretion of the human chorionic gonadotropin beta-subunit (ßhCG) in human first trimester placental explants and the trophoblast cell line BeWo. Impaired ßhCG synthesis was not the consequence of hampered morphological differentiation, as assessed by analysis of differentiation-associated genes and electron microscopy. Platelet-derived factors did not affect intracellular cAMP levels and phosphorylation of CREB, but activated Smad3 and its downstream-target plasminogen activator inhibitor (PAI)-1 in forskolin-induced BeWo cell differentiation. While TGF-ß type I receptor inhibitor SB431542 did not restore impaired ßhCG production in response to platelet-derived factors, Smad3 inhibitor SIS3 interfered with CREB activation, suggesting an interaction of cAMP/CREB and Smad3 signaling. Sequestration of transcription co-activators CBP/p300, known to bind both CREB and Smad3, may limit ßhCG production, since CBP/p300 inhibitor C646 significantly restricted its forskolin-induced upregulation. In conclusion, our study suggests that degranulation of maternal platelets at the early maternal-fetal interface can impair placental ßhCG production, without substantially affecting morphological and biochemical differentiation of villous trophoblasts. KEY MESSAGES: Maternal platelets can be detected on the surface of the placental villi and in intercellular gaps of trophoblast cell columns from gestational week 5 onwards. Platelet-derived factors impair hCG synthesis in human first trimester placenta. Platelet-derived factors activate Smad3 in trophoblasts. Smad3 inhibitor SIS3 interferes with forskolin-induced CREB signaling. Sequestration of CBP/p300 by activated Smad3 may limit placental hCG production.


Assuntos
Plaquetas , Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Placenta/metabolismo , Proteína Smad3/metabolismo , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Proteína p300 Associada a E1A/metabolismo , Feminino , Humanos , Gravidez , Primeiro Trimestre da Gravidez/metabolismo
8.
Trends Biotechnol ; 38(1): 13-23, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31326128

RESUMO

Human platelet lysate (HPL), rich in growth factors, is an efficient alternative supplement to fetal bovine serum (FBS) for ex vivo propagation of stromal cell-based medicinal products. Since 2014, HPL has been a focus of the Working Party for Cellular Therapies of the International Society of Blood Transfusion (ISBT). Currently, as several Good Manufacturing Practice (GMP)-compliant manufacturing protocols exist, an international consensus defining the optimal modes of industrial production, product specification, pathogen safety, and release criteria of this ancillary material (AM) is needed. This opinion article by the ISBT Working Party summarizes the current knowledge on HPL production and proposes recommendations on manufacturing and quality management in line with current technological innovations and regulations of biological products and advanced therapy medicinal products.


Assuntos
Produtos Biológicos , Plaquetas , Transfusão de Sangue , Terapia Baseada em Transplante de Células e Tecidos , Meios de Cultura , Biotecnologia , Plaquetas/química , Plaquetas/citologia , Plaquetas/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Células-Tronco Mesenquimais , Medicina Transfusional/organização & administração
9.
Sci Rep ; 9(1): 7258, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076619

RESUMO

Pooled human platelet lysate (pHPL) is increasingly used as replacement of animal serum for manufacturing of stromal cell therapeutics. Porcine heparin is commonly applied to avoid clotting of pHPL-supplemented medium but the influence of heparin on cell behavior is still unclear. Aim of this study was to investigate cellular uptake of heparin by fluoresceinamine-labeling and its impact on expression of genes, proteins and function of human stromal cells derived from bone marrow (BM), umbilical cord (UC) and white adipose tissue (WAT). Cells were isolated and propagated using various pHPL-supplemented media with or without heparin. Flow cytometry and immunocytochemistry showed differential cellular internalization and lysosomal accumulation of heparin. Transcriptome profiling revealed regulation of distinct gene sets by heparin including signaling cascades involved in proliferation, cell adhesion, apoptosis, inflammation and angiogenesis, depending on stromal cell origin. The influence of heparin on the WNT, PDGF, NOTCH and TGFbeta signaling pathways was further analyzed by a bead-based western blot revealing most alterations in BM-derived stromal cells. Despite these observations heparin had no substantial effect on long-term proliferation and in vitro tri-lineage differentiation of stromal cells, indicating compatibility for clinically applied cell products.


Assuntos
Expressão Gênica/fisiologia , Heparina/metabolismo , Células Estromais/metabolismo , Plaquetas/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Soro/metabolismo , Transdução de Sinais/fisiologia , Cordão Umbilical/metabolismo
10.
Transfusion ; 59(4): 1407-1413, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30741431

RESUMO

A state-of-the-art workshop focused on the use of human platelet lysate (HPL) for cell therapy. The meeting established that HPL is used mainly as an adjunct material for ex vivo expansion of mesenchymal stem/progenitor cells (MSCs), where it is successfully used as a substitute for fetal bovine serum. HPL manufacturing as a cell expansion supplement is currently not yet uniformly standardized with regard to platelet source and production methodology. There are very few reports of HPL preparations manufactured specifically for direct clinical use. There exists an urgent need for controlled clinical studies for HPL and for standardization of product definition. Workshop participants also stated a need for consensus minimum release criteria to allow for better product definition and to limit variability in performance. The increasing use of cell-based therapies including MSCs has led to an increasing demand for HPL, either produced in blood establishments or large-scale manufacture by biopharmaceutical companies. The use of pooled donor platelets for HPL production may require the implementation of pathogen inactivation procedures and/or removal steps to improve the safety of advanced cell therapy products. There should also be a requirement for thorough risk assessments and risk mitigation steps, including the qualification of suppliers and identification of ingredients as well as meticulous monitoring of product quality and safety profiles. State-of-the-art regulatory approaches for HPL used for human cell propagation and PRP in direct clinical applications were reviewed.


Assuntos
Plaquetas/química , Extratos Celulares/química , Extratos Celulares/normas , Extratos Celulares/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos , Animais , Bovinos , Educação , Humanos , Células-Tronco Mesenquimais/metabolismo
11.
J Transl Med ; 17(1): 432, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888679

RESUMO

BACKGROUND: Innovative human stromal cell therapeutics require xeno-free culture conditions. Various formulations of human platelet lysate (HPL) are efficient alternatives for fetal bovine serum (FBS). However, a consistent lack of standardized manufacturing protocols and quality criteria hampers comparability of HPL-products. Aim of this study was to compare the biochemical composition of three differential HPL-preparations with FBS and to investigate their impact on stromal cell biology. METHODS: Stromal cells were isolated from bone marrow (BM), white adipose tissue (WAT) and umbilical cord (UC) and cultured in medium supplemented with pooled HPL (pHPL), fibrinogen-depleted serum-converted pHPL (pHPLS), mechanically fibrinogen-depleted pHPL (mcpHPL) and FBS. Biochemical parameters were analyzed in comparison to standard values in whole blood. Distinct growth factors and cytokines were measured by bead-based multiplex technology. Flow cytometry of stromal cell immunophenotype, in vitro differentiation, and mRNA expression analysis of transcription factors SOX2, KLF4, cMYC, OCT4 and NANOG were performed. RESULTS: Biochemical parameters were comparable in all pHPL preparations, but to some extent different to FBS. Total protein, glucose, cholesterol and Na+ were elevated in pHPL preparations, K+ and Fe3+ levels were higher in FBS. Compared to FBS, pHPL-based media significantly enhanced stromal cell propagation. Characteristic immunophenotype and in vitro differentiation potential were maintained in all four culture conditions. The analysis of growth factors and cytokines revealed distinct levels depending on the pre-existence in pHPL, consumption or secretion by the stromal cells. Interestingly, mRNA expression of the transcription and mitotic bookmarking factors cMYC and KLF4 was significantly enhanced in a source dependent manner in stromal cells cultured in pHPL- compared to FBS-supplemented media. SOX2 mRNA expression of all stromal cell types was increased in all pHPL culture conditions. CONCLUSION: All pHPL-supplemented media equally supported proliferation of WAT- and UC-derived stromal cells significantly better than FBS. Mitotic bookmarking factors, known to enable a quick re-entry to the cell cycle, were significantly enhanced in pHPL-expanded cells. Our results support a better characterization and standardization of humanized culture media for stromal cell-based medicinal products.


Assuntos
Plaquetas/metabolismo , Diferenciação Celular , Mitose , Regulação para Cima , Tecido Adiposo Branco/citologia , Células da Medula Óssea/citologia , Diferenciação Celular/genética , Proliferação de Células , Citocinas/metabolismo , Humanos , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mitose/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cordão Umbilical/citologia , Regulação para Cima/genética
12.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241615

RESUMO

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Assuntos
Desenvolvimento Ósseo/fisiologia , Osso e Ossos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Osso e Ossos/metabolismo , Cartilagem/citologia , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única/métodos , Células-Tronco/citologia , Células Estromais/citologia , Transcriptoma/genética
13.
Theranostics ; 8(5): 1421-1434, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507631

RESUMO

Intravascular transplantation of tissue factor (TF)-bearing cells elicits an instant blood-mediated inflammatory reaction (IBMIR) resulting in thrombotic complications and reduced engraftment. Here we studied the hemocompatibility of commonly used human white adipose tissue (WAT), umbilical cord (UC) and bone marrow stromal cells (BMSC) and devised a possible strategy for safe and efficient stromal cell transplantation. Methods: Stromal cell identity, purity, and TF expression was tested by RTQ-PCR, flow cytometry and immunohistochemistry. Pro-coagulant activity and fibrin clot formation/stabilization was measured In Vitro by viscoelastic rotational plasma-thromboelastometry and in vivo by injecting sorted human stromal cells intravenously into rats. The impact of TF was verified in factor VII-deficient plasma and by sort-depleting TF/CD142+ BMSC. Results: We found significantly less TF expression by a subpopulation of BMSC corresponding to reduced pro-coagulant activity. UC and WAT stroma showed broad TF expression and durable clotting. Higher cell numbers significantly increased clot formation partially dependent on coagulation factor VII. Depleting the TF/CD142+ subpopulation significantly ameliorated BMSC's hemocompatibility without affecting immunomodulation. TF-deficient BMSC did not produce thromboembolism in vivo, comparing favorably to massive intravascular thrombosis induction by TF-expressing stromal cells. Conclusion: We demonstrate that plasma-based thromboelastometry provides a reliable tool to detect pro-coagulant activity of therapeutic cells. Selecting TF-deficient BMSC is a novel strategy for improving cell therapy applicability by reducing cell dose-dependent IBMIR risk. The particularly strong pro-coagulant activity of UC and WAT preparations sounds an additional note of caution regarding uncritical systemic application of stromal cells, particularly from non-hematopoietic extravascular sources.


Assuntos
Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Tromboplastina/deficiência , Adulto , Animais , Coagulação Sanguínea , Contagem de Células , Tamanho Celular , Transplante de Células , Células Cultivadas , Feminino , Humanos , Imunomodulação , Masculino , Pessoa de Meia-Idade , Ratos , Fatores de Risco , Tromboembolia/etiologia , Tromboembolia/patologia , Tromboplastina/metabolismo , Adulto Jovem
14.
Nat Protoc ; 12(10): 2169-2188, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28933777

RESUMO

Xenotransplantation is frequently used to study normal and malignant hematopoiesis of human cells. However, conventional mouse xenotransplantation models lack essential human-specific bone-marrow (BM)-microenvironment-derived survival, proliferation, and self-renewal signals for engraftment of normal and malignant blood cells. As a consequence, many human leukemias and other hematologic disorders do not robustly engraft in these conventional models. Here, we describe a complete workflow for the generation of humanized ossicles with an accessible BM microenvironment that faithfully recapitulates normal BM niche morphology and function. The ossicles, therefore, allow for accelerated and superior engraftment of primary patient-derived acute myeloid leukemia (AML) and other hematologic malignancies such as myelofibrosis (MF) in mice. The humanized ossicles are formed by in situ differentiation of BM-derived mesenchymal stromal cells (MSCs). Human hematopoietic cells can subsequently be transplanted directly into the ossicle marrow space or by intravenous injection. Using this method, a humanized engraftable BM microenvironment can be formed within 6-10 weeks. Engraftment of human hematopoietic cells can be evaluated by flow cytometry 8-16 weeks after transplantation. This protocol describes a robust and reproducible in vivo methodology for the study of normal and malignant human hematopoiesis in a more physiologic setting.


Assuntos
Células da Medula Óssea , Transplante de Medula Óssea/métodos , Técnicas de Cultura de Células/métodos , Modelos Animais de Doenças , Nicho de Células-Tronco/fisiologia , Transplante Heterólogo/métodos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Camundongos
15.
Int J Mol Sci ; 18(6)2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-28587212

RESUMO

Extracellular vesicles (EVs) derived from stem and progenitor cells may have therapeutic effects comparable to their parental cells and are considered promising agents for the treatment of a variety of diseases. To this end, strategies must be designed to successfully translate EV research and to develop safe and efficacious therapies, whilst taking into account the applicable regulations. Here, we discuss the requirements for manufacturing, safety, and efficacy testing of EVs along their path from the laboratory to the patient. Development of EV-therapeutics is influenced by the source cell types and the target diseases. In this article, we express our view based on our experience in manufacturing biological therapeutics for routine use or clinical testing, and focus on strategies for advancing mesenchymal stromal cell (MSC)-derived EV-based therapies. We also discuss the rationale for testing MSC-EVs in selected diseases with an unmet clinical need such as critical size bone defects, epidermolysis bullosa and spinal cord injury. While the scientific community, pharmaceutical companies and clinicians are at the point of entering into clinical trials for testing the therapeutic potential of various EV-based products, the identification of the mode of action underlying the suggested potency in each therapeutic approach remains a major challenge to the translational path.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Fracionamento Celular/métodos , Vesículas Extracelulares , Animais , Fracionamento Celular/normas , Micropartículas Derivadas de Células , Exossomos , Humanos
16.
Cytotherapy ; 19(4): 458-472, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28188071

RESUMO

BACKGROUND AIMS: Extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) may contribute to biological processes such as tissue regeneration, immunomodulation and neuroprotection. Evaluation of their therapeutic potential and application in future clinical trials demands thorough characterization of EV content and production under defined medium conditions, devoid of xenogenic substances and serum-derived vesicles. Addressing the apparent need for such a growth medium, we have developed a medium formulation based on pooled human platelet lysate (pHPL), free from animal-derived xenogenic additives and depleted of EVs. METHODS: Depletion of EVs from complete growth medium was achieved by centrifugation at 120 000 g for 3 h, which reduced RNA-containing pHPL EVs to below the detection limit. RESULTS: Bone marrow (BM)-derived MSCs propagated in this medium retained the characteristic surface marker expression, cell morphology, viability and in vitro osteogenic and adipogenic differentiation potential. The proliferation rate was not significantly affected after 48 h but was decreased by 13% after 96 h. EVs collected from BM-MSCs cultured in EV-depleted medium revealed a similar RNA pattern as EVs generated in standard pHPL EV-containing medium but displayed a more clearly defined pattern of proteins characteristic for EVs. Reduction of pHPL content from 10% to 2% or serum-/pHPL-free conditions strongly altered MSC characteristics and RNA content of released EV. CONCLUSIONS: The 10% pHPL-based EV-depleted medium is appropriate for purification of exclusively human MSC-derived EVs. With this Good Manufacturing Practice-grade protocol, characterization and establishment of protein and RNA profiles from MSC-derived EVs can now be achieved to identify active components in therapeutic EVs for future clinical application.


Assuntos
Técnicas de Cultura de Células/normas , Engenharia Celular/normas , Vesículas Extracelulares/transplante , Indústria Manufatureira/normas , Células-Tronco Mesenquimais/citologia , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Diferenciação Celular/efeitos dos fármacos , Engenharia Celular/métodos , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Indústria Manufatureira/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/ultraestrutura , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Guias de Prática Clínica como Assunto/normas , Padrões de Referência
17.
Stem Cells ; 35(5): 1233-1245, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28100035

RESUMO

Regeneration of injured tissues requires effective therapeutic strategies supporting vasculogenesis. The lack of instantly available autologous cell sources and immunogenicity of allogeneic endothelial (progenitor) cells limits clinical progress. Based on the immunosuppressive potency of mesenchymal stem/progenitor cells (MSCs), we investigated whether crosstalk between endothelial colony-forming progenitor cells (ECFCs) and MSCs during vasculogenesis could lower allogeneic T cell responses against ECFCs allowing long-term engraftment in vivo. Immunodeficient mice received subcutaneous grafts containing human ECFCs alone, or pairs of human ECFCs/MSCs from the same umbilical cord (UC) to study vasculogenesis in the presence of human leukocyte antigen (HLA)-mismatched human peripheral blood mononuclear cells (PBMCs). In vitro, cell surface marker changes due to interferon gamma (IFNγ) stimulation during ECFC/MSC coculture were determined and further effects on allostimulated T cell proliferation and cytotoxic lysis were measured. IFNγ-induced HLA-DR expression on ECFCs and MSCs, but both cell types had significantly less HLA-DR in cocultures. ECFC-induced T cell proliferation was abolished after MSC coculture as a result of HLA-DR downregulation and indolamin-2,3-dioxygenase activation. Additionally, allospecific CD8+ T cell-mediated lysis of ECFCs was reduced in cocultures. ECFC/MSC coapplication in immunodeficient mice not only promoted the generation of improved blood vessel architecture after 6 weeks, but also reduced intragraft immune cell infiltration and endothelial HLA-DR expression following PBMC reconstitution. Crosstalk between UC-derived ECFCs and MSCs after combined transplantation can lower the risk of ECFC rejection, thus enabling their coapplication for therapeutic vasculogenesis. Stem Cells 2017;35:1233-1245.


Assuntos
Células Endoteliais/imunologia , Células Endoteliais/transplante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ensaio de Unidades Formadoras de Colônias , Citotoxicidade Imunológica/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/patologia , Interferon gama/farmacologia , Masculino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/transplante
18.
Nat Med ; 23(3): 386-395, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28134926

RESUMO

Developmental tumors in children and young adults carry few genetic alterations, yet they have diverse clinical presentation. Focusing on Ewing sarcoma, we sought to establish the prevalence and characteristics of epigenetic heterogeneity in genetically homogeneous cancers. We performed genome-scale DNA methylation sequencing for a large cohort of Ewing sarcoma tumors and analyzed epigenetic heterogeneity on three levels: between cancers, between tumors, and within tumors. We observed consistent DNA hypomethylation at enhancers regulated by the disease-defining EWS-FLI1 fusion protein, thus establishing epigenomic enhancer reprogramming as a ubiquitous and characteristic feature of Ewing sarcoma. DNA methylation differences between tumors identified a continuous disease spectrum underlying Ewing sarcoma, which reflected the strength of an EWS-FLI1 regulatory signature and a continuum between mesenchymal and stem cell signatures. There was substantial epigenetic heterogeneity within tumors, particularly in patients with metastatic disease. In summary, our study provides a comprehensive assessment of epigenetic heterogeneity in Ewing sarcoma and thereby highlights the importance of considering nongenetic aspects of tumor heterogeneity in the context of cancer biology and personalized medicine.


Assuntos
Neoplasias Ósseas/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/genética , Adolescente , Adulto , Linhagem Celular Tumoral , Criança , Pré-Escolar , Epigênese Genética , Feminino , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Adulto Jovem
19.
J Clin Apher ; 32(1): 12-15, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26939709

RESUMO

BACKGROUND: Extracorporeal photopheresis (ECP) is an important cell-based therapy for various diseases but is limited to patients eligible for apheresis. We developed an alternative mini buffy coat (BC) preparation method using the Spectra Optia® apheresis system and compared its efficacy of white blood cell (WBC) recovery with the standard mini BC preparation method already established for pediatric patients. METHODS: Whole blood (450 ± 45 mL) samples were collected from 30 randomly selected healthy volunteer blood donors and divided into two groups. In the first group, WBCs were separated with a fully automated separator device (Compomat G4® ). In the second group, BCs were separated with the bone marrow processing program of the Spectra Optia apheresis system. RESULTS: There were no significant differences in total leukocyte counts per product between the two groups. In contrast, lymphocyte counts per product were significantly higher (P < 0.001) in BCs separated from apheresis. CONCLUSION: Our novel technique resulted in similar WBC yields but higher lymphocyte yields than the standard mini BC preparation method. This method can serve as an alternative to WBC collection in conventional ECP for adult patients with apheresis contraindications. J. Clin. Apheresis 32:12-15, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Buffy Coat/citologia , Fotoferese/métodos , Adulto , Remoção de Componentes Sanguíneos/métodos , Remoção de Componentes Sanguíneos/normas , Separação Celular/métodos , Humanos , Contagem de Leucócitos , Leucócitos/citologia , Contagem de Linfócitos , Fotoferese/normas
20.
Nat Med ; 22(7): 812-21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213817

RESUMO

Xenotransplantation models represent powerful tools for the investigation of healthy and malignant human hematopoiesis. However, current models do not fully mimic the components of the human bone marrow (BM) microenvironment, and they enable only limited engraftment of samples from some human malignancies. Here we show that a xenotransplantation model bearing subcutaneous humanized ossicles with an accessible BM microenvironment, formed by in situ differentiation of human BM-derived mesenchymal stromal cells, enables the robust engraftment of healthy human hematopoietic stem and progenitor cells, as well as primary acute myeloid leukemia (AML) samples, at levels much greater than those in unmanipulated mice. Direct intraossicle transplantation accelerated engraftment and resulted in the detection of substantially higher leukemia-initiating cell (LIC) frequencies. We also observed robust engraftment of acute promyelocytic leukemia (APL) and myelofibrosis (MF) samples, and identified LICs in these malignancies. This humanized ossicle xenotransplantation approach provides a system for modeling a wide variety of human hematological diseases.


Assuntos
Transplante de Medula Óssea , Transplante Ósseo , Modelos Animais de Doenças , Hematopoese , Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Camundongos , Transplante de Neoplasias , Mielofibrose Primária , Animais , Células da Medula Óssea , Osso e Ossos , Diferenciação Celular , Sangue Fetal , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Mesenquimais , Camundongos SCID , Transplante Heterólogo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...