Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 11(519)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748230

RESUMO

Patients with rheumatoid arthritis (RA) may display atypical CD21-/lo B cells in their blood, but the implication of this observation remains unclear. We report here that the group of patients with RA and elevated frequencies of CD21-/lo B cells shows decreased ataxia telangiectasia-mutated (ATM) expression and activation in B cells compared with other patients with RA and healthy donor controls. In agreement with ATM involvement in the regulation of V(D)J recombination, patients with RA who show defective ATM function displayed a skewed B cell receptor (BCR) Igκ repertoire, which resembled that of patients with ataxia telangiectasia (AT). This repertoire was characterized by increased Jκ1 and decreased upstream Vκ gene segment usage, suggesting improper secondary recombination processes and selection. In addition, altered ATM function in B cells was associated with decreased osteoprotegerin and increased receptor activator of nuclear factor κB ligand (RANKL) production. These changes favor bone loss and correlated with a higher prevalence of erosive disease in patients with RA who show impaired ATM function. Using a humanized mouse model, we also show that ATM inhibition in vivo induces an altered Igκ repertoire and RANKL production by immature B cells in the bone marrow, leading to decreased bone density. We conclude that dysregulated ATM function in B cells promotes bone erosion and the emergence of circulating CD21-/lo B cells, thereby contributing to RA pathophysiology.

3.
Nat Commun ; 10(1): 3106, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308374

RESUMO

Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.

4.
Sci Immunol ; 4(34)2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979797

RESUMO

Autoimmune regulator (AIRE) mutations result in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome characterized by defective central T cell tolerance and the production of many autoantibodies targeting tissue-specific antigens and cytokines. By studying CD3- and AIRE-deficient patients, we found that lack of either T cells or AIRE function resulted in the peripheral accumulation of autoreactive mature naïve B cells. Proteomic arrays and Biacore affinity measurements revealed that unmutated antibodies expressed by these autoreactive naïve B cells recognized soluble molecules and cytokines including insulin, IL-17A, and IL-17F, which are AIRE-dependent thymic peripheral tissue antigens targeted by autoimmune responses in APECED. AIRE-deficient patients also displayed decreased frequencies of regulatory T cells (Tregs) that lacked common TCRß clones found instead in their conventional T cell compartment, thereby suggesting holes in the Treg TCR repertoire of these patients. Hence, AIRE-mediated T cell/Treg selection normally prevents the expansion of autoreactive naïve B cells recognizing peripheral self-antigens.

5.
Nature ; 559(7714): 405-409, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995861

RESUMO

Decades of work have aimed to genetically reprogram T cells for therapeutic purposes1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites3,4. The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair5,6. Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.

6.
Artigo em Inglês | MEDLINE | ID: mdl-29935219

RESUMO

BACKGROUND: The lack of pathogen-protective, isotype-switched antibodies in patients with common variable immunodeficiency (CVID) suggests germinal center (GC) hypoplasia, yet a subset of patients with CVID is paradoxically affected by autoantibody-mediated autoimmune cytopenias (AICs) and lymphadenopathy. OBJECTIVE: We sought to compare the physical characteristics and immunologic output of GC responses in patients with CVID with AIC (CVID+AIC) and without AIC (CVID-AIC). METHODS: We analyzed GC size and shape in excisional lymph node biopsy specimens from 14 patients with CVID+AIC and 4 patients with CVID-AIC. Using paired peripheral blood samples, we determined how AICs specifically affected B-and T-cell compartments and antibody responses in patients with CVID. RESULTS: We found that patients with CVID+AIC displayed irregularly shaped hyperplastic GCs, whereas GCs were scarce and small in patients with CVID-AIC. GC hyperplasia was also evidenced by an increase in numbers of circulating follicular helper T cells, which correlated with decreased regulatory T-cell frequencies and function. In addition, patients with CVID+AIC had serum endotoxemia associated with a dearth of isotype-switched memory B cells that displayed significantly lower somatic hypermutation frequencies than their counterparts with CVID-AIC. Moreover, IgG+ B cells from patients with CVID+AIC expressed VH4-34-encoded antibodies with unmutated Ala-Val-Tyr and Asn-His-Ser motifs, which recognize both erythrocyte I/i self-antigens and commensal bacteria. CONCLUSIONS: Patients with CVID+AIC do not contain mucosal microbiota and exhibit hyperplastic yet inefficient GC responses that favor the production of untolerized IgG+ B-cell clones that recognize both commensal bacteria and hematopoietic I/i self-antigens.

7.
JCI Insight ; 3(5)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29515028

RESUMO

B cells play a central role in systemic lupus erythematosus (SLE) pathophysiology but dysregulated pathways leading to a break in B cell tolerance remain unclear. Since Toll-like receptor 9 (TLR9) favors the elimination of autoreactive B cells in the periphery, we assessed TLR9 function in SLE by analyzing the responses of B cells and plasmacytoid dendritic cells (pDCs) isolated from healthy donors and patients after stimulation with CpG, a TLR9 agonist. We found that SLE B cells from patients without hydroxychloroquine treatment displayed defective in vitro TLR9 responses, as illustrated by the impaired upregulation of B cell activation molecules and the diminished production of various cytokines including antiinflammatory IL-10. In agreement with CD19 controlling TLR9 responses in B cells, decreased expression of the CD19/CD21 complex on SLE B cells was detected as early as the transitional B cell stage. In contrast, TLR7 function was preserved in SLE B cells, whereas pDCs from SLE patients properly responded to TLR9 stimulation, thereby revealing that impaired TLR9 function in SLE was restricted to B cells. We conclude that abnormal CD19 expression and TLR9 tolerogenic function in SLE B cells may contribute to the break of B cell tolerance in these patients.

9.
J Exp Med ; 214(7): 1991-2003, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28500047

RESUMO

The germline immunoglobulin (Ig) variable heavy chain 4-34 (VH4-34) gene segment encodes in humans intrinsically self-reactive antibodies that recognize I/i carbohydrates expressed by erythrocytes with a specific motif in their framework region 1 (FWR1). VH4-34-expressing clones are common in the naive B cell repertoire but are rarely found in IgG memory B cells from healthy individuals. In contrast, CD27+IgG+ B cells from patients genetically deficient for IRAK4 or MYD88, which mediate the function of Toll-like receptors (TLRs) except TLR3, contained VH4-34-expressing clones and showed decreased somatic hypermutation frequencies. In addition, VH4-34-encoded IgGs from IRAK4- and MYD88-deficient patients often displayed an unmutated FWR1 motif, revealing that these antibodies still recognize I/i antigens, whereas their healthy donor counterparts harbored FWR1 mutations abolishing self-reactivity. However, this paradoxical self-reactivity correlated with these VH4-34-encoded IgG clones binding commensal bacteria antigens. Hence, B cells expressing germline-encoded self-reactive VH4-34 antibodies may represent an innate-like B cell population specialized in the containment of commensal bacteria when gut barriers are breached.


Assuntos
Linfócitos B/imunologia , Bactérias/imunologia , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Adolescente , Adulto , Sequência de Aminoácidos , Antígenos de Bactérias/imunologia , Autoanticorpos/genética , Autoanticorpos/imunologia , Linfócitos B/metabolismo , Criança , Pré-Escolar , Seleção Clonal Mediada por Antígeno , Feminino , Microbioma Gastrointestinal/imunologia , Humanos , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Quinases Associadas a Receptores de Interleucina-1/deficiência , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/imunologia , Masculino , Mutação , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Homologia de Sequência de Aminoácidos , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Adulto Jovem
10.
Blood ; 129(8): 959-969, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28077418

RESUMO

Humanized mice are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, the existing models cannot support robust adaptive immune responses, especially the generation of class-switched, antigen-specific antibody responses. Here we describe a new mouse strain, in which human interleukin 6 (IL-6) gene encoding the cytokine that is important for B- and T-cell differentiation was knocked into its respective mouse locus. The provision of human IL-6 not only enhanced thymopoiesis and periphery T-cell engraftment, but also significantly increased class switched memory B cells and serum immunoglobulin G (IgG). In addition, immunization with ovalbumin (OVA) induced OVA-specific B cells only in human IL-6 knock-in mice. These OVA-specific antibodies displayed the highest frequency of somatic mutation, further suggesting that human IL-6 is important for efficient B-cell activation and selection. We conclude that human IL-6 knock-in mice represent a novel and improved model for human adaptive immunity without relying on complex surgery to transplant human fetal thymus and liver. These mice can therefore be used to exploit or evaluate immunization regimes that would be unethical or untenable in humans.


Assuntos
Imunidade Adaptativa , Formação de Anticorpos , Técnicas de Introdução de Genes , Switching de Imunoglobulina , Interleucina-6/genética , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Galinhas , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Imunização , Imunoglobulina G/imunologia , Interleucina-6/imunologia , Camundongos , Ovalbumina/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
11.
Sci Immunol ; 1(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917411

RESUMO

The 1858T protein tyrosine phosphatase nonreceptor type 22 (PTPN22 T) allele is one of the main risk factors associated with many autoimmune diseases and correlates with a defective removal of developing autoreactive B cells in humans. To determine whether inhibiting PTPN22 favors the elimination of autoreactive B cells, we first demonstrated that the PTPN22 T allele interfered with the establishment of central B cell tolerance using NOD-scid-common γ chain knockout (NSG) mice engrafted with human hematopoietic stem cells expressing this allele. In contrast, the inhibition of either PTPN22 enzymatic activity or its expression by RNA interference restored defective central B cell tolerance in this model. Thus, PTPN22 blockade may represent a therapeutic strategy for the prevention or treatment of autoimmunity.

12.
J Clin Invest ; 126(11): 4289-4302, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27701145

RESUMO

Patients with mutations in AICDA, which encodes activation-induced cytidine deaminase (AID), display an impaired peripheral B cell tolerance. AID mediates class-switch recombination (CSR) and somatic hypermutation (SHM) in B cells, but the mechanism by which AID prevents the accumulation of autoreactive B cells in blood is unclear. Here, we analyzed B cell tolerance in AID-deficient patients, patients with autosomal dominant AID mutations (AD-AID), asymptomatic AICDA heterozygotes (AID+/-), and patients with uracil N-glycosylase (UNG) deficiency, which impairs CSR but not SHM. The low frequency of autoreactive mature naive B cells in UNG-deficient patients resembled that of healthy subjects, revealing that impaired CSR does not interfere with the peripheral B cell tolerance checkpoint. In contrast, we observed decreased frequencies of SHM in memory B cells from AD-AID patients and AID+/- subjects, who were unable to prevent the accumulation of autoreactive mature naive B cells. In addition, the individuals with AICDA mutations, but not UNG-deficient patients, displayed Tregs with defective suppressive capacity that correlated with increases in circulating T follicular helper cells and enhanced cytokine production. We conclude that SHM, but not CSR, regulates peripheral B cell tolerance through the production of mutated antibodies that clear antigens and prevent sustained interleukin secretions that interfere with Treg function.


Assuntos
Linfócitos B/imunologia , Pontos de Checagem do Ciclo Celular/imunologia , Citidina Desaminase/deficiência , Tolerância Imunológica , Memória Imunológica , Mutação , Hipermutação Somática de Imunoglobulina/imunologia , Linfócitos B/patologia , Pontos de Checagem do Ciclo Celular/genética , Citidina Desaminase/imunologia , Feminino , Humanos , Masculino , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
13.
Sci Immunol ; 1(1): aaf7153, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-28783674

RESUMO

The 1858T protein tyrosine phosphatase nonreceptor type 22 (PTPN22 T) allele is one of the main risk factors associated with many autoimmune diseases and correlates with a defective removal of developing autoreactive B cells in humans. To determine whether inhibiting PTPN22 favors the elimination of autoreactive B cells, we first demonstrated that the PTPN22 T allele interfered with the establishment of central B cell tolerance using NOD-scid-common γ chain knockout (NSG) mice engrafted with human hematopoietic stem cells expressing this allele. In contrast, the inhibition of either PTPN22 enzymatic activity or its expression by RNA interference restored defective central B cell tolerance in this model. Thus, PTPN22 blockade may represent a therapeutic strategy for the prevention or treatment of autoimmunity.

14.
Eur J Immunol ; 46(1): 131-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26474536

RESUMO

The links between infections and the development of B-cell-mediated autoimmune diseases are still unclear. In particular, it has been suggested that infection-induced stimulation of innate immune sensors can engage low affinity autoreactive B lymphocytes to mature and produce mutated IgG pathogenic autoantibodies. To test this hypothesis, we established a new knock-in mouse model in which autoreactive B cells could be committed to an affinity maturation process. We show that a chronic bacterial infection allows the activation of such B cells and the production of nonmutated IgM autoantibodies. Moreover, in the constitutive presence of their soluble antigen, some autoreactive clones are able to acquire a germinal center phenotype, to induce Aicda gene expression and to introduce somatic mutations in the IgG heavy chain variable region on amino acids forming direct contacts with the autoantigen. Paradoxically, only lower affinity variants are detected, which strongly suggests that higher affinity autoantibodies secreting B cells are counterselected. For the first time, we demonstrate in vivo that a noncross-reactive infectious agent can activate and induce autoreactive B cells to isotype switching and autoantigen-driven mutations, but on a nonautoimmune background, tolerance mechanisms prevent the formation of consequently dangerous autoimmunity.


Assuntos
Autoantígenos/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Switching de Imunoglobulina/imunologia , Doença de Lyme/imunologia , Animais , Afinidade de Anticorpos/imunologia , Borrelia burgdorferi , Doença Crônica , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Técnicas de Introdução de Genes , Isotipos de Imunoglobulinas/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Ressonância de Plasmônio de Superfície
15.
J Allergy Clin Immunol ; 137(3): 889-98.e6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26478008

RESUMO

BACKGROUND: CD19 is a B cell-specific molecule that serves as a major costimulatory molecule for amplifying B-cell receptor (BCR) responses. Biallelic CD19 gene mutations cause common variable immunodeficiency in human subjects. BCR- and Toll-like receptor (TLR) 9-induced B-cell responses are impaired in most patients with common variable immunodeficiency. OBJECTIVE: We sought to analyze whether CD19 is required for TLR9 function in human B cells. METHODS: Expression of surface activation markers was assessed after anti-IgM or CpG stimulation by using flow cytometry on B cells from patients with 1 or 2 defective CD19 alleles, which decrease or abrogate CD19 expression, respectively. The phosphorylation or interaction of signaling molecules was analyzed by using phospho flow cytometry, immunoblotting, or co-immunoprecipitation in CD19-deficient or control B cells and in a B-cell line in which CD19 has been knocked down with lentivirus-transduced short hairpin RNA. RESULTS: B cells from subjects with 1 or 2 defective CD19 alleles showed defective upregulation in vitro of CD86, transmembrane activator and CAML interactor (TACI), and CD23 activation markers after TLR9 stimulation. TLR9 ligands normally induce phosphorylation of CD19 through myeloid differentiation primary response gene-88 (MYD88)/proline-rich tyrosine kinase 2 (PYK2)/LYN complexes, which allows recruitment of phosphoinositide 3-kinase (PI3K) and phosphorylation of Bruton tyrosine kinase (BTK) and AKT in human B cells with a different kinetic than that of BCRs. In addition, inhibition of PI3K, AKT, or BTK, as well as BTK deficiency, also resulted in TLR9 activation defects in B cells similar to those in patients with CD19 deficiency. CONCLUSION: CD19 is required for TLR9-induced B-cell activation. Hence CD19/PI3K/AKT/BTK is an essential axis integrating BCRs and TLR9 signaling in human B cells.


Assuntos
Antígenos CD19/genética , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Receptor Toll-Like 9/metabolismo , Tirosina Quinase da Agamaglobulinemia , Estudos de Casos e Controles , Quinase 2 de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Heterozigoto , Homozigoto , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Mutação , Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptor Toll-Like 9/agonistas
16.
Immunity ; 43(5): 884-95, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26546282

RESUMO

Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.


Assuntos
Tolerância Central/genética , Tolerância Central/imunologia , Citidina Desaminase/genética , Ativação Linfocitária/imunologia , Células Precursoras de Linfócitos B/imunologia , Adolescente , Adulto , Idoso , Animais , Apoptose/genética , Apoptose/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Feminino , Genes de Imunoglobulinas/genética , Genes de Imunoglobulinas/imunologia , Humanos , Ativação Linfocitária/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Recombinação Genética/genética , Recombinação Genética/imunologia , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Adulto Jovem
17.
J Clin Invest ; 125(10): 3941-51, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368308

RESUMO

Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by microthrombocytopenia, eczema, and high susceptibility to developing tumors and autoimmunity. Recent evidence suggests that B cells may be key players in the pathogenesis of autoimmunity in WAS. Here, we assessed whether WAS protein deficiency (WASp deficiency) affects the establishment of B cell tolerance by testing the reactivity of recombinant antibodies isolated from single B cells from 4 WAS patients before and after gene therapy (GT). We found that pre-GT WASp-deficient B cells were hyperreactive to B cell receptor stimulation (BCR stimulation). This hyperreactivity correlated with decreased frequency of autoreactive new emigrant/transitional B cells exiting the BM, indicating that the BCR signaling threshold plays a major role in the regulation of central B cell tolerance. In contrast, mature naive B cells from WAS patients were enriched in self-reactive clones, revealing that peripheral B cell tolerance checkpoint dysfunction is associated with impaired suppressive function of WAS regulatory T cells. The introduction of functional WASp by GT corrected the alterations of both central and peripheral B cell tolerance checkpoints. We conclude that WASp plays an important role in the establishment and maintenance of B cell tolerance in humans and that restoration of WASp by GT is able to restore B cell tolerance in WAS patients.


Assuntos
Linfócitos B/imunologia , Terapia Genética , Vetores Genéticos/uso terapêutico , Tolerância Imunológica , Proteína da Síndrome de Wiskott-Aldrich/uso terapêutico , Síndrome de Wiskott-Aldrich/terapia , Adulto , Sequência de Aminoácidos , Medula Óssea/patologia , Criança , Pré-Escolar , Deleção Clonal , Células Clonais/imunologia , Humanos , Lentivirus/genética , Masculino , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas Recombinantes de Fusão , Linfócitos T Reguladores/imunologia , Síndrome de Wiskott-Aldrich/imunologia , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Proteína da Síndrome de Wiskott-Aldrich/genética
18.
Immun Inflamm Dis ; 3(3): 265-79, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26417441

RESUMO

Systemic Lupus Erythematosus (SLE) is a severe systemic autoimmune disease, characterized by multi-organ damages, triggered by an autoantibody-mediated inflammation, and with a complex genetic influence. It is today accepted that adult SLE arises from the building up of many subtle gene variations, each one adding a new brick on the SLE susceptibility and contributing to a phenotypic trait to the disease. One of the ways to find these gene variations consists in comprehensive analysis of gene expression variation in a precise cell type, which can constitute a good complementary strategy to genome wide association studies. Using this strategy, and considering the central role of B cells in SLE, we analyzed the B cell transcriptome of quiescent SLE patients, and identified an overexpression of FKBP11, coding for a cytoplasmic putative peptidyl-prolyl cis/trans isomerase and chaperone enzyme. To understand the consequences of FKBP11 overexpression on B cell function and on autoimmunity's development, we created lentiviral transgenic mice reproducing this gene expression variation. We showed that high expression of Fkbp11 reproduces by itself two phenotypic traits of SLE in mice: breakdown of B cell tolerance against DNA and initiation of plasma cell differentiation by acting upstream of Pax5 master regulator gene.

19.
J Immunol ; 195(4): 1417-26, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26150533

RESUMO

The vast majority of IgA production occurs in mucosal tissue following T cell-dependent and T cell-independent Ag responses. To study the nature of each of these responses, we analyzed the gene-expression and Ig-reactivity profiles of T cell-dependent CD27(+)IgA(+) and T cell-independent CD27(-)IgA(+) circulating memory B cells. Gene-expression profiles of IgA(+) subsets were highly similar to each other and to IgG(+) memory B cell subsets, with typical upregulation of activation markers and downregulation of inhibitory receptors. However, we identified the mucosa-associated CCR9 and RUNX2 genes to be specifically upregulated in CD27(-)IgA(+) B cells. We also found that CD27(-)IgA(+) B cells expressed Abs with distinct Ig repertoire and reactivity compared with those from CD27(+)IgA(+) B cells. Indeed, Abs from CD27(-)IgA(+) B cells were weakly mutated, often used Igλ chain, and were enriched in polyreactive clones recognizing various bacterial species. Hence, T cell-independent IgA responses are likely involved in the maintenance of gut homeostasis through the production of polyreactive mutated IgA Abs with cross-reactive anti-commensal reactivity.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Bactérias/imunologia , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Imunoglobulinas/imunologia , Memória Imunológica , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Autoimunidade/genética , Análise por Conglomerados , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Imunoglobulinas/genética , Membrana Mucosa/imunologia , Membrana Mucosa/metabolismo , Receptores CCR/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
20.
J Allergy Clin Immunol ; 136(5): 1315-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26100089

RESUMO

BACKGROUND: Heterozygous C104R or A181E TNF receptor superfamily member 13b (TNFRSF13B) mutations impair removal of autoreactive B cells, weaken B-cell activation, and convey to patients with common variable immune deficiency (CVID) an increased risk for autoimmunity. How mutant transmembrane activator and CAML interactor (TACI) influences wild-type TACI function is unclear; different models suggest either a dominant negative effect or haploinsufficiency. OBJECTIVE: We investigated potential TACI haploinsufficiency by analyzing patients with antibody-deficient Smith-Magenis syndrome (SMS) who possess only 1 TNFRSF13B allele and antibody-deficient patients carrying one c.204insA TNFRSF13B null mutation. METHODS: We tested the reactivity of antibodies isolated from single B cells from patients with SMS and patients with a c.204insA TNFRSF13B mutation and compared them with counterparts from patients with CVID with heterozygous C104R or A181E TNFRSF13B missense mutations. We also assessed whether loss of a TNFRSF13B allele induced haploinsufficiency in naive and memory B cells and recapitulated abnormal immunologic features typical of patients with CVID with heterozygous TNFRSF13B missense mutations. RESULTS: We found that loss of a TNFRSF13B allele does not affect TACI expression, activation responses, or establishment of central B-cell tolerance in naive B cells. Additionally, patients with SMS and those with a c.204insA TNFRSF13B mutation display normal regulatory T-cell function and peripheral B-cell tolerance. The lack of a TNFRSF13B allele did result in decreased TACI expression on memory B cells, resulting in impaired activation and antibody secretion. CONCLUSION: TNFRSF13B hemizygosity does not recapitulate autoimmune features of CVID-associated C104R and A181E TNFRSF13B mutations, which likely encode dominant negative products, but instead reveals selective TACI haploinsufficiency at later stages of B-cell development.


Assuntos
Linfócitos B/imunologia , Imunodeficiência de Variável Comum/imunologia , Síndrome de Smith-Magenis/imunologia , Linfócitos T Reguladores/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Formação de Anticorpos/genética , Autoimunidade , Criança , Feminino , Haploinsuficiência , Hemizigoto , Humanos , Memória Imunológica , Ativação Linfocitária/genética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA