Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(17): 12808-12830, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34455780

RESUMO

The first candidate PI-2014 was tested in healthy controls and subjects with Alzheimer's disease (AD). As PI-2014 displayed off-target binding to monoamine oxidase A (MAO-A), a new lead with improved binding to Tau and decreased MAO-A binding was required. For compound optimization, Tau binding assays based on both human AD brain homogenate and Tau-paired helical filaments were employed. Furthermore, two MAO-A screening assays based on (1) human-recombinant MAO-A and (2) displacement of 2-fluoro-ethyl-harmine from mouse brain homogenate were employed. Removing the N-methyl group from the tricyclic core resulted in compounds displaying improved Tau binding. For the final round of optimization, the cyclic amine substituents were replaced by pyridine derivatives. PI-2620 (2-(2-fluoropyridin-4-yl)-9H-pyrrolo[2,3-b:4,5-c']dipyridine) emerged as a best candidate displaying high Tau binding, low MAO-A binding, high brain uptake, and fast and complete brain washout. Furthermore, PI-2620 showed Tau binding on brain sections from corticobasal degeneration, progressive supranuclear palsy, and Pick's disease.

2.
Eur J Med Chem ; 204: 112615, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32771872

RESUMO

The compound screening was initiated with a direct staining assay to identify compounds binding to Tau aggregates and not Abeta plaques using human brain sections derived from late stage Alzheimer's disease donors. The binding of Tau aggregate selective compounds was then quantitatively assessed with human brain derived paired helical filaments utilizing the label-free Back Scattering Interferometry assay. In vivo biodistribution experiments of selected fluorine-18 labeled compounds were performed in mice to assess brain uptake, brain washout, and defluorination. Compound 11 emerged as the most promising candidate, displaying high in vitro binding affinity and selectivity to neurofibrillary tangles. Fluorine-18 labeled compound 11 showed high brain uptake and rapid washout from the mouse brain with no observed bone uptake. Furthermore, compound 11 was able to detect Tau aggregates in tauopathy brain sections from corticobasal degeneration, progressive supranuclear palsy, and Pick's disease donors. Thus, 2-(4-(2-fluoroethoxy)piperidin-1-yl)-9-methyl-9H-pyrrolo[2,3-b:4,5-c']dipyridine (PI-2014, compound 11) was selected for characterization in a first-in-human study.


Assuntos
Doença de Alzheimer/metabolismo , Descoberta de Drogas , Radioisótopos de Flúor/química , Compostos Radiofarmacêuticos/química , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Animais , Encéfalo/metabolismo , Humanos , Macaca mulatta , Camundongos , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Primatas , Agregados Proteicos , Ligação Proteica , Compostos Radiofarmacêuticos/farmacocinética , Tauopatias/diagnóstico por imagem
3.
Eur J Nucl Med Mol Imaging ; 46(10): 2178-2189, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31264169

RESUMO

PURPOSE: Tau deposition is a key pathological feature of Alzheimer's disease (AD) and other neurodegenerative disorders. The spreading of tau neurofibrillary tangles across defined brain regions corresponds to the observed level of cognitive decline in AD. Positron-emission tomography (PET) has proved to be an important tool for the detection of amyloid-beta (Aß) aggregates in the brain, and is currently being explored for detection of pathological misfolded tau in AD and other non-AD tauopathies. Several PET tracers targeting tau deposits have been discovered and tested in humans. Limitations have been reported, especially regarding their selectivity. METHODS: In our screening campaign we identified pyrrolo[2,3-b:4,5-c']dipyridine core structures with high affinity for aggregated tau. Further characterization showed that compounds containing this moiety had significantly reduced monoamine oxidase A (MAO-A) binding compared to pyrido[4,3-b]indole derivatives such as AV-1451. RESULTS: Here we present preclinical data of all ten fluoropyridine regioisomers attached to the pyrrolo[2,3-b:4,5-c']dipyridine scaffold, revealing compounds 4 and 7 with superior properties. The lead candidate [18F]PI-2620 (compound 7) displayed high affinity for tau deposits in AD brain homogenate competition assays. Specific binding to pathological misfolded tau was further demonstrated by autoradiography on AD brain sections (Braak I-VI), Pick's disease and progressive supranuclear palsy (PSP) pathology, whereas no specific tracer binding was detected on brain slices from non-demented donors. In addition to its high affinity binding to tau aggregates, the compound showed excellent selectivity with no off-target binding to Aß or MAO-A/B. Good brain uptake and fast washout were observed in healthy mice and non-human primates. CONCLUSIONS: Therefore, [18F]PI-2620 was selected for clinical validation.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Inibidores da Monoaminoxidase/síntese química , Tomografia por Emissão de Pósitrons/métodos , Piridinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor/farmacocinética , Humanos , Macaca mulatta , Camundongos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacocinética , Ligação Proteica , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética
4.
Pharmaceuticals (Basel) ; 11(1)2018 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-29562610

RESUMO

Within the last decade, several folate-based radiopharmaceuticals for Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been evaluated; however, there is still a lack of suitable 18F-folates for clinical PET imaging. Herein, we report the synthesis and evaluation of two novel 18F-folates employing strain-promoted and copper-catalyzed click chemistry. Furthermore, the influence of both click-methods on lipophilicity and pharmacokinetics of the 18F-folates was investigated. 18F-Ala-folate and 18F-DBCO-folate were both stable in human serum albumin. In vitro studies proved their high affinity to the folate receptor (FR). The lipophilic character of the strain-promoted clicked 18F-DBCO-folate (logD = 0.6) contributed to a higher non-specific binding in cell internalization studies. In the following in vivo PET imaging studies, FR-positive tumors could not be visualized in a maximum intensity projection images. Compared with 18F-DBCO-folate, 18F-Ala-folate (logD = -1.4), synthesized by the copper-catalyzed click reaction, exhibited reduced lipophilicity, and as a result an improved in vivo performance and a clear-cut visualization of FR-positive tumors. In view of high radiochemical yield, radiochemical purity and favorable pharmacokinetics, 18F-Ala-folate is expected to be a promising candidate for FR-PET imaging.

5.
Bioorg Med Chem ; 23(3): 612-23, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25541203

RESUMO

In this study we synthesized four different (18)F-labeling precursors for the visualization of the monoamino oxidase A using harmol derivatives. Whereas two are for prosthetic group labeling using [(18)F]fluoro-d2-methyl tosylate and 2-[(18)F]fluoroethyl-tosylate, the other three precursors are for direct nucleophilic (18)F-labeling. Additionally the corresponding reference compounds were synthesized. The syntheses of [(18)F]fluoro-d2-methyl-harmol and 2-[(18)F]fluoroethyl-harmol were carried out using harmol as starting material. For direct nucleophilic (18)F-labeling of the tracers carrying oligoethyled spacers (PEG), a toluenesulfonyl leaving group was employed. The radiolabeling, purification and formulation for each tracer was optimized and evaluated in vitro and in vivo. Stability tests in human serum showed that all tracers were stable over the observation period of 60 min. µPET studies using of the synthesized tracers revealed that the tracers carrying PEG spacers showed no sufficient brain uptake. Consequently, the (18)F-fuoro alkylated tracers [(18)F]fluoro-d2-methyl-harmol and 2-[(18)F]fluoroethyl-harmol were further evaluated showing SUVs in the brain of 1.0±0.2 g/mL and 3.4±0.5 g/mL after 45 min, respectively. In blockade studies the selectivity and specificity of both tracers were demonstrated. However, for [(18)F]fluoro-d2-methyl-harmol a rapid washout from the brain was also observed. In vitro binding assays revealed that 2-[(18)F]fluoroethyl-harmol (IC50=0.54±0.06 nM) has a higher affinity than the (18)F-fluoro-d2-methylated ligand (IC50=12.2±0.6 nM), making 2-[(18)F]fluoroethyl-harmol superior to the other evaluated compounds and a promising tracer for PET imaging of the MAO A.


Assuntos
Carbolinas/química , Radioisótopos de Flúor/química , Monoaminoxidase/química , Animais , Carbolinas/sangue , Carbolinas/metabolismo , Estabilidade de Medicamentos , Humanos , Técnicas In Vitro , Marcação por Isótopo , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Ratos , Ratos Sprague-Dawley
6.
Macromol Biosci ; 14(10): 1396-405, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25088821

RESUMO

The synthesis of a 10.5 kDa and a 52.5 kDa polymer, based on pHPMA functionalized with tyramine for (18) F-labeling and a folate derivative as targeting moiety, is reported. FCS studies are conducted using Oregon Green-labeled conjugates. No aggregation is observed for the 10.5 kDa conjugate, but strong aggregation for the 52.5 kDa conjugate. In vivo studies are conducted using Walker-256 mammary carcinoma model to determine body distribution as function of size and especially targeting unit. These in vivo studies show a higher short time (2 h) accumulation for both conjugates in the tumor than for untargeted pHPMA, confirmed by blockade studies. The 10.5 kDa polymer accumulates with 0.46% ID g(-1) and the 52.5 kDa polymer with 0.28% ID g(-1) in the tumor after 2 h, demonstrating the potential of the folate-targeting concept.


Assuntos
Carcinoma/terapia , Meios de Contraste/síntese química , Portadores de Fármacos/síntese química , Ácido Fólico/metabolismo , Neoplasias Mamárias Animais/terapia , Ácidos Polimetacrílicos/química , Animais , Benzenossulfonatos/química , Ácidos Carboxílicos , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Meios de Contraste/farmacologia , Portadores de Fármacos/farmacologia , Feminino , Radioisótopos de Flúor , Receptores de Folato com Âncoras de GPI/genética , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Expressão Gênica , Marcação por Isótopo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Terapia de Alvo Molecular , Tomografia por Emissão de Pósitrons/métodos , Ratos , Distribuição Tecidual , Tiramina/química
7.
Biomed Res Int ; 2014: 361329, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25003110

RESUMO

Due to expanding applications of positron emission tomography (PET) there is a demand for developing new techniques to introduce fluorine-18 (t 1/2 = 109.8 min). Considering that most novel PET tracers are sensitive biomolecules and that direct introduction of fluorine-18 often needs harsh conditions, the insertion of (18)F in those molecules poses an exceeding challenge. Two major challenges during (18)F-labeling are a regioselective introduction and a fast and high yielding way under mild conditions. Furthermore, attention has to be paid to functionalities, which are usually present in complex structures of the target molecule. The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and several copper-free click reactions represent such methods for radiolabeling of sensitive molecules under the above-mentioned criteria. This minireview will provide a quick overview about the development of novel (18)F-labeled prosthetic groups for click cycloadditions and will summarize recent trends in copper-catalyzed and copper-free click (18)F-cycloadditions.


Assuntos
Química Click/métodos , Reação de Cicloadição , Radioisótopos de Flúor/química , Coloração e Rotulagem , Animais , Catálise , Cobre/química
8.
Pharmaceuticals (Basel) ; 7(4): 392-418, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24699244

RESUMO

Nanomedicine has become an emerging field in imaging and therapy of malignancies. Nanodimensional drug delivery systems have already been used in the clinic, as carriers for sensitive chemotherapeutics or highly toxic substances. In addition, those nanodimensional structures are further able to carry and deliver radionuclides. In the development process, non-invasive imaging by means of positron emission tomography (PET) represents an ideal tool for investigations of pharmacological profiles and to find the optimal nanodimensional architecture of the aimed-at drug delivery system. Furthermore, in a personalized therapy approach, molecular imaging modalities are essential for patient screening/selection and monitoring. Hence, labeling methods for potential drug delivery systems are an indispensable need to provide the radiolabeled analog. In this review, we describe and discuss various approaches and methods for the labeling of potential drug delivery systems using positron emitters.

9.
J Labelled Comp Radiopharm ; 56(9-10): 432-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24285516

RESUMO

The folate receptor (FR) is already known as a proven target in diagnostics and therapy of cancer. Furthermore, the FR is involved in inflammatory and autoimmune diseases. The major advantage as a valuable target is its strongly limited expression in healthy tissues. Over the past two decades, several folic acid-based radiopharmaceuticals addressing the FR have been developed, and some of them show great potential for applications in clinical routine. However, most of these radiofolates were developed for single photon emission computed tomography imaging, and only a few can be used for positron emission tomography (PET) imaging. The development of suitable (18) F-labeled derivatives for PET imaging of the FR has aroused great interest and recent studies revealed very promising candidates for further development and translation into human applications. In this review, we focus on the development of (18) F-labeled folic acid derivatives for PET imaging of the FR and discuss various radiochemical strategies and approaches towards (18) F-folates. Besides radiochemistry and (18) F-labeling, we briefly look into the crucial pharmacological parameters and the preclinical in vivo performance of those (18) F-folates.


Assuntos
Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Animais , Radioisótopos de Flúor , Humanos , Marcação por Isótopo
10.
EJNMMI Res ; 3(1): 68, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24041035

RESUMO

BACKGROUND: The folate receptor (FR) is a well-established target for tumor imaging and therapy. To date, only a few 18 F-folate conjugates via 18 F-prosthetic group labeling for positron emission tomography (PET) imaging have been developed. To some extent, they all lack the optimal balance between efficient radiochemistry and favorable in vivo characteristics. METHODS: A new clickable olate precursor was synthesized by regioselective coupling of folic acid to 11-azido-3,6,9-trioxaundecan-1-amine at the γ-position of the glutamic acid residue. The non-radioactive reference compound was synthesized via copper-catalyzed azide-alkyne cycloaddition of 3-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)prop-1-yne and γ-(11-azido-3,6,9-trioxaundecanyl)folic acid amide. The radiosynthesis was accomplished in two steps: at first a 18 F-fluorination of 2-(2-(2-(prop-2-yn-1-yloxy)ethoxy)ethoxy)ethyl-4-methylbenzenesulfonate, followed by a 18 F-click reaction with the γ-azido folate. The in vitro, ex vivo, and in vivo behaviors of the new 18 F-folate were investigated using FR-positive human KB cells in displacement assays and microPET studies using KB tumor-bearing mice. RESULTS: The new 18 F-folate with oligoethylene spacers showed reduced lipophilicity in respect to the previously developed 18 F-click folate with alkyl spacers and excellent affinity (Ki = 1.6 nM) to the FR. Combining the highly efficient 18 F-click chemistry and a polar oligoethylene-based 18 F-prosthetic group facilitated these results. The overall radiochemical yield of the isolated and formulated product averages 8.7%. In vivo PET imaging in KB tumor-bearing mice showed a tumor uptake of 3.4% ID/g tissue, which could be reduced by FR blockade with native folic acid. Although the new 18 F-oligoethyleneglycole (OEG)-folate showed reduced hepatobiliary excretion over time, a distinct unspecific abdominal background was still observed. CONCLUSIONS: A new 18 F-folate was developed, being available in very high radiochemical yields via a fast and convenient two-step radiosynthesis. The new 18 F-OEG-folate showed good in vivo behavior and lines up with several recently evaluated 18 F-labeled folates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...