Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 44(8): 2672-2686, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33748996

RESUMO

Plant leaves that are exposed to herbivore-induced plant volatiles (HIPVs) respond by increasing their defenses, a phenomenon referred to as priming. Whether this phenomenon also occurs in the roots is unknown. Using maize plants, Zea mays, whose leaves respond strongly to leaf HIPVs, we measured the impact of belowground HIPVs, emanating from roots infested by the banded cucumber beetle, Diabrotica balteata, on constitutive and herbivore-induced levels of defense-related gene expression, phytohormones, volatile and non-volatile primary and secondary metabolites, growth and herbivore resistance in roots of neighbouring plants. HIPV exposure did not increase constitutive or induced levels of any of the measured root traits. Furthermore, HIPV exposure did not reduce the performance or survival of D. balteata on maize or its ancestor teosinte. Cross-exposure experiments between HIPVs from roots and leaves revealed that maize roots, in contrast to maize leaves, neither emit nor respond strongly to defense-regulating HIPVs. Together, these results demonstrate that volatile-mediated defense regulation is restricted to the leaves of maize. This finding is in line with the lower diffusibility of volatiles in the soil and the availability of other, potentially more efficient, information conduits below ground.

2.
PLoS Biol ; 19(2): e3001114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600420

RESUMO

Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.


Assuntos
Benzoxazinas/metabolismo , Besouros/fisiologia , Açúcares/metabolismo , Zea mays/metabolismo , Animais , Comportamento Apetitivo/fisiologia , Besouros/crescimento & desenvolvimento , Herbivoria , Larva/crescimento & desenvolvimento , Larva/fisiologia , Metaboloma , Raízes de Plantas/metabolismo , Zea mays/genética
3.
Plant Cell Environ ; 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33073385

RESUMO

The above article was published in error by the publisher before a final editorial decision had been reached. It has therefore been removed temporarily while the editorial process concludes. The publisher apologizes for the inconvenience.

4.
Sci Rep ; 9(1): 1727, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741999

RESUMO

Plant defensive substances can affect the quality of herbivores as prey for predators either directly or indirectly. Directly when the prey has become toxic since it ingested toxic plant material and indirectly when these defences have affected the size and/or nutritional value (both quality parameters) of prey or their abundance. To disentangle direct and indirect effects of JA-defences on prey quality for predators, we used larvae of the omnivorous thrips Frankliniella occidentalis because these are not directly affected by the jasmonate-(JA)-regulated defences of tomato. We offered these thrips larvae the eggs of spider mites (Tetranychus urticae or T. evansi) that had been feeding from either normal tomato plants, JA-impaired plants, or plants treated with JA to artificially boost defences and assessed their performance. Thrips development and survival was reduced on the diet of T. evansi eggs relative to the diet of T. urticae eggs yet these effects were independent from the absence/presence of JA-defences. This indicates that the detrimental effects of tomato JA-defences on herbivores not necessarily also affects their quality as prey.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/metabolismo , Comportamento Predatório , Tisanópteros , Animais , Herbivoria , Lycopersicon esculentum , Ácaros , Folhas de Planta , Característica Quantitativa Herdável
5.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347842

RESUMO

Tomato plants are attacked by diverse herbivorous arthropods, including by cell-content-feeding mites, such as the extreme generalist Tetranychus urticae and specialists like Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, T. evansi and A. lycopersici suppress plant defenses via poorly understood mechanisms and, consequently, maintain a high performance on tomato. On a shared host, T. urticae can be facilitated by either of the specialist mites, likely due to the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used gene-expression microarrays to analyze the transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but the response was attenuated after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes were differentially expressed upon single infestations with T. urticae or A. lycopersici, respectively, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that A. lycopersici primarily suppressed T. urticae-induced JA defenses, while T. evansi dampened T. urticae-triggered host responses on a transcriptome-wide scale. The latter suggests that T. evansi not solely down-regulates plant gene expression, but rather directs it back towards housekeeping levels. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.


Assuntos
Interações Hospedeiro-Parasita , Lycopersicon esculentum/genética , Ácaros/patogenicidade , Imunidade Vegetal , Transcriptoma , Animais , Ciclopentanos/metabolismo , Lycopersicon esculentum/imunologia , Lycopersicon esculentum/parasitologia , Oxilipinas/metabolismo
6.
Front Plant Sci ; 9: 1057, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105039

RESUMO

Plants have evolved numerous defensive traits that enable them to resist herbivores. In turn, this resistance has selected for herbivores that can cope with defenses by either avoiding, resisting or suppressing them. Several species of herbivorous mites, such as the spider mites Tetranychus urticae and Tetranychus evansi, were found to maximize their performance by suppressing inducible plant defenses. At first glimpse it seems obvious why such a trait will be favored by natural selection. However, defense suppression appeared to readily backfire since mites that do so also make their host plant more suitable for competitors and their offspring more attractive for natural enemies. This, together with the fact that spider mites are infamous for their ability to resist (plant) toxins directly, justifies the question as to why traits that allow mites to suppress defenses nonetheless seem to be relatively common? We argue that this trait may facilitate generalist herbivores, like T. urticae, to colonize new host species. While specific detoxification mechanisms may, on average, be suitable only on a narrow range of similar hosts, defense suppression may be more broadly effective, provided it operates by targeting conserved plant signaling components. If so, resistance and suppression may be under frequency-dependent selection and be maintained as a polymorphism in generalist mite populations. In that case, the defense suppression trait may be under rapid positive selection in subpopulations that have recently colonized a new host but may erode in relatively isolated populations in which host-specific detoxification mechanisms emerge. Although there is empirical evidence to support these scenarios, it contradicts the observation that several of the mite species found to suppress plant defenses actually are relatively specialized. We argue that in these cases buffering traits may enable such mites to mitigate the negative side effects of suppression in natural communities and thus shield this trait from natural selection.

7.
Plant Signal Behav ; 12(10): e1370526, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28857667

RESUMO

When feeding from tomato (Solanum lycopersicum), the generalist spider mite Tetranychus urticae induces jasmonate (JA)- and salicylate (SA)-regulated defense responses that hamper its performance. The related T. evansi, a Solanaceae-specialist, suppresses these defenses, thereby upholding a high performance. On a shared leaf, T. urticae can be facilitated by T. evansi, likely via suppression of defenses by the latter. Yet, when infesting the same plant, T. evansi outcompetes T. urticae. Recently, we found that T. evansi intensifies suppression of defenses locally, i.e., at its feeding site, after T. urticae mites were introduced onto adjacent leaf tissue. This hyper-suppression is paralleled by an increased oviposition rate of T. evansi, probably promoting its competitive population growth. Here we present additional data that not only provide insight into the spatiotemporal dynamics of defense induction and suppression by mites, but that also suggest T. evansi to manipulate more than JA and SA defenses alone.


Assuntos
Lycopersicon esculentum/metabolismo , Lycopersicon esculentum/parasitologia , Ácaros/patogenicidade , Animais , Ciclopentanos/metabolismo , Feminino , Herbivoria/fisiologia , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Salicilatos/metabolismo , Análise Espaço-Temporal
8.
New Phytol ; 214(4): 1688-1701, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28386959

RESUMO

Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato.


Assuntos
Herbivoria , Lycopersicon esculentum/fisiologia , Phaseolus/fisiologia , Tetranychidae/fisiologia , Animais , Ciclopentanos/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Masculino , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Ácido Salicílico/metabolismo , Tetranychidae/genética
9.
Int J Mol Sci ; 18(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28106771

RESUMO

It is well known that microbial pathogens and herbivores elicit defence responses in plants. Moreover, microorganisms associated with herbivores, such as bacteria or viruses, can modulate the plant's response to herbivores. Herbivorous spider mites can harbour different species of bacterial symbionts and exert a broad range of effects on host-plant defences. Hence, we tested the extent to which such symbionts affect the plant's defences induced by their mite host and assessed if this translates into changes in plant resistance. We assessed the bacterial communities of two strains of the common mite pest Tetranychus urticae. We found that these strains harboured distinct symbiotic bacteria and removed these using antibiotics. Subsequently, we tested to which extent mites with and without symbiotic bacteria induce plant defences in terms of phytohormone accumulation and defence gene expression, and assessed mite oviposition and survival as a measure for plant resistance. We observed that the absence/presence of these bacteria altered distinct plant defence parameters and affected mite performance but we did not find indications for a causal link between the two. We argue that although bacteria-related effects on host-induced plant defences may occur, these do not necessarily affect plant resistance concomitantly.


Assuntos
Bactérias/efeitos dos fármacos , Herbivoria , Lycopersicon esculentum/microbiologia , Lycopersicon esculentum/parasitologia , Simbiose , Tetranychidae/fisiologia , Animais , Antibacterianos/farmacologia , Feminino , Herbivoria/efeitos dos fármacos , Lycopersicon esculentum/imunologia , Masculino , Movimento , Reguladores de Crescimento de Plantas/análise , Análise de Sobrevida , Simbiose/efeitos dos fármacos , Tetranychidae/efeitos dos fármacos
10.
Plant Sci ; 252: 300-310, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717467

RESUMO

Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation.


Assuntos
Ciclopentanos/farmacologia , Lycopersicon esculentum/fisiologia , Ácaros/efeitos dos fármacos , Oxilipinas/farmacologia , Tetranychidae/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Ciclopentanos/metabolismo , Herbivoria/efeitos dos fármacos , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Ácaros/fisiologia , Oviposição/efeitos dos fármacos , Oxilipinas/metabolismo , Comportamento Predatório/efeitos dos fármacos , Reprodução , Tetranychidae/fisiologia
11.
J Exp Bot ; 66(11): 3405-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25883382

RESUMO

The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lycopersicon esculentum/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Divisão Celular , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
12.
New Phytol ; 205(2): 828-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25297722

RESUMO

Plants respond to herbivory by mounting a defense. Some plant-eating spider mites (Tetranychus spp.) have adapted to plant defenses to maintain a high reproductive performance. From natural populations we selected three spider mite strains from two species, Tetranychus urticae and Tetranychus evansi, that can suppress plant defenses, using a fourth defense-inducing strain as a benchmark, to assess to which extent these strains suppress defenses differently. We characterized timing and magnitude of phytohormone accumulation and defense-gene expression, and determined if mites that cannot suppress defenses benefit from sharing a leaf with suppressors. The nonsuppressor strain induced a mixture of jasmonate- (JA) and salicylate (SA)-dependent defenses. Induced defense genes separated into three groups: 'early' (expression peak at 1 d postinfestation (dpi)); 'intermediate' (4 dpi); and 'late', whose expression increased until the leaf died. The T. evansi strains suppressed genes from all three groups, but the T. urticae strain only suppressed the late ones. Suppression occurred downstream of JA and SA accumulation, independently of the JA-SA antagonism, and was powerful enough to boost the reproductive performance of nonsuppressors up to 45%. Our results show that suppressing defenses not only brings benefits but, within herbivore communities, can also generate a considerable ecological cost when promoting the population growth of a competitor.


Assuntos
Ciclopentanos/metabolismo , Lycopersicon esculentum/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Tetranychidae , Animais , Feminino , Regulação da Expressão Gênica de Plantas , Herbivoria , Lycopersicon esculentum/fisiologia , Folhas de Planta , Tetranychidae/fisiologia
13.
Int J Mol Sci ; 13(12): 17077-103, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23235331

RESUMO

Glandular trichomes are specialized hairs found on the surface of about 30% of all vascular plants and are responsible for a significant portion of a plant's secondary chemistry. Glandular trichomes are an important source of essential oils, i.e., natural fragrances or products that can be used by the pharmaceutical industry, although many of these substances have evolved to provide the plant with protection against herbivores and pathogens. The storage compartment of glandular trichomes usually is located on the tip of the hair and is part of the glandular cell, or cells, which are metabolically active. Trichomes and their exudates can be harvested relatively easily, and this has permitted a detailed study of their metabolites, as well as the genes and proteins responsible for them. This knowledge now assists classical breeding programs, as well as targeted genetic engineering, aimed to optimize trichome density and physiology to facilitate customization of essential oil production or to tune biocide activity to enhance crop protection. We will provide an overview of the metabolic diversity found within plant glandular trichomes, with the emphasis on those of the Solanaceae, and of the tools available to manipulate their activities for enhancing the plant's resistance to pests.


Assuntos
Cruzamento , Genes de Plantas/fisiologia , Engenharia Genética , Fenômenos Fisiológicos Vegetais , Solanaceae , Tricomas , Animais , Herbivoria , Solanaceae/genética , Solanaceae/metabolismo , Tricomas/genética , Tricomas/metabolismo
14.
Plant Physiol ; 156(2): 974-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21464473

RESUMO

R2R3-MYB transcription factors (TFs) are involved in diverse aspects of plant biology. Recently an R2R3-MYB was identified in Petunia x hybrida line P720 to have a role in the transcriptional regulation of floral volatile production. We propose a more foundational role for the R2R3-MYB TF EMISSION OF BENZENOIDS II (EOBII). The homolog of EOBII was isolated and characterized from P. x hybrida 'Mitchell Diploid' (MD) and Nicotiana attenuata. For both MD and N. attenuata, EOBII transcript accumulates to high levels in floral tissue with maximum accumulation at flower opening. When EOBII transcript levels are severely reduced using a stable RNAi (ir) approach in MD and N. attenuata, ir-EOBII flowers fail to enter anthesis and prematurely senesce. Transcript accumulation analysis demonstrated core phenylpropanoid pathway transcripts and cell wall modifier transcript levels are altered in ir-EOBII flowers. These flowers can be partially complemented by feeding with a sucrose, t-cinnamic acid, and gibberellic acid solution; presumably restoring cellular aspects sufficient for flower opening. Additionally, if ethylene sensitivity is blocked in either MD or N. attenuata, ir-EOBII flowers enter anthesis. These experiments demonstrate one R2R3-MYB TF can control a highly dynamic process fundamental to sexual reproduction in angiosperms: the opening of flowers.


Assuntos
Flores/genética , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Petunia/genética , Petunia/fisiologia , Proteínas de Plantas/metabolismo , Diploide , Etilenos/farmacologia , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Dados de Sequência Molecular , Petunia/efeitos dos fármacos , Petunia/crescimento & desenvolvimento , Fenótipo , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Interferência de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tabaco/efeitos dos fármacos , Tabaco/genética
15.
Plant J ; 61(1): 145-55, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19811620

RESUMO

In Petunia x hybrida cv. 'Mitchell Diploid' floral fragrance is comprised of 13 volatile benzenoids/phenylpropanoids derived from the aromatic amino acid phenylalanine. Several genes involved in the direct synthesis of individual floral volatile benzenoid/phenylpropanoid (FVBP) compounds, i.e. at the end of the pathway, have been isolated and characterized in petunia through reverse genetic and biochemical approaches. In an effort to understand the regulation of 'upstream' components in the FVBP system, we have cloned and characterized two CHORISMATE MUTASE (PhCM1 and PhCM2) cDNAs from petunia. PhCM1 has a transcript accumulation profile consistent with known FVBP genes, while PhCM2 showed a constitutive transcript accumulation profile. The plastid-localized PhCM1 is allosterically regulated by tryptophan but not phenylalanine or tyrosine. The total FVBP emission in PhCM1 RNAi knockdown petunias is reduced by approximately 60-70%, and total chorismate mutase activity in corolla tissue is reduced by 80-85% compared to control plants. These results show that PhCM1 is the principal CHORISMATE MUTASE responsible for the coupling of metabolites from the shikimate pathway to the synthesis of FVBPs in the corolla of Petunia x hybrida cv. 'Mitchell Diploid'.


Assuntos
Corismato Mutase/fisiologia , Flores/metabolismo , Petunia/enzimologia , Proteínas de Plantas/fisiologia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Corismato Mutase/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos , Proteínas de Plantas/genética , Propanóis/química , Propanóis/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo
16.
Phytochemistry ; 71(2-3): 158-67, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19889429

RESUMO

Petunia (Petunia x hybrida cv 'Mitchell Diploid' [MD]) flowers emit high levels of multiple floral volatile benzenoid/phenylpropanoid (FVBP) compounds from anthesis to senescence in a concerted manner. Here we show seven genes responsible for the production of emitted FVBPs share similar transcript accumulation profiles through an analysis of four expression criteria. As a group, the FVBP gene transcripts accumulate to high levels in petal limb tissue of MD flowers from anthesis to senescence. Two to four hours of exogenous ethylene exposure reduces transcript levels of all FVBP genes examined, but 2h of treatment will not accelerate senescence or reduce volatile emissions in MD flowers. The FVBP genes show two obvious rhythmic patterns of transcript accumulation; however, corresponding enzyme activities of a subset of FVBP gene products do not. Together, these results depict floral volatile benzenoid/phenylpropanoid biosynthesis as a specific system with multiple regulatory features. One such feature is the highly regulated transcript accumulation of the FVBP genes. Additionally, ethylene may have a regulatory role in the FVBP system prior to a floral senescence program.


Assuntos
Etilenos/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Petunia/genética , Proteínas de Plantas/genética , Propanóis , Compostos Orgânicos Voláteis/metabolismo , Derivados de Benzeno/metabolismo , Senescência Celular/genética , Senescência Celular/fisiologia , Flores/metabolismo , Expressão Gênica , Petunia/metabolismo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...