Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(32): 10903-10908, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31050096

RESUMO

A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images.

2.
Nat Commun ; 10(1): 32, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604776

RESUMO

We present a microkinetic model for CO(2) reduction (CO(2)R) on Cu(211) towards C2 products, based on energetics estimated from an explicit solvent model. We show that the differences in both Tafel slopes and pH dependence for C1 vs C2 activity arise from differences in their multi-step mechanisms. We find the depletion in C2 products observed at high overpotential and high pH to arise from the 2nd order dependence of C-C coupling on CO coverage, which decreases due to competition from the C1 pathway. We further demonstrate that CO(2) reduction at a fixed pH yield similar activities, due to the facile kinetics for CO2 reduction to CO on Cu, which suggests C2 products to be favored for CO2R under alkaline conditions. The mechanistic insights of this work elucidate how reaction conditions can lead to significant enhancements in selectivity and activity towards higher value C2 products.

3.
Science ; 361(6403): 686-690, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30115807

RESUMO

Silver (Ag) clusters confined in matrices possess remarkable luminescence properties, but little is known about their structural and electronic properties. We characterized the bright green luminescence of Ag clusters confined in partially exchanged Ag-Linde Type A (LTA) zeolites by means of a combination of x-ray excited optical luminescence-extended x-ray absorption fine structure, time-dependent-density functional theory calculations, and time-resolved spectroscopy. A mixture of tetrahedral Ag4(H2O) x2+ (x = 2 and x = 4) clusters occupies the center of a fraction of the sodalite cages. Their optical properties originate from a confined two-electron superatom quantum system with hybridized Ag and water O orbitals delocalized over the cluster. Upon excitation, one electron of the s-type highest occupied molecular orbital is promoted to the p-type lowest unoccupied molecular orbitals and relaxes through enhanced intersystem crossing into long-lived triplet states.

4.
Nanoscale ; 10(5): 2363-2370, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29328339

RESUMO

Au nanoparticles represent the most remarkable example of a size effect in heterogeneous catalysis. However, a major issue hindering the use of Au nanoparticles in technological applications is their rapid sintering. We explore the potential of stabilizing Au nanoclusters on SiO2 by alloying them with a reactive metal, Ti. Mass-selected Au/Ti clusters (400 000 amu) and Au2057 clusters (405 229 amu) were produced with a magnetron sputtering, gas condensation cluster beam source in conjunction with a lateral time-of-flight mass filter, deposited onto a silica support and characterised by XPS and LEIS. The sintering dynamics of mass-selected Au and Au/Ti alloy nanoclusters were investigated in real space and real time with atomic resolution aberration-corrected HAADF-STEM imaging, supported by model DFT calculations. A strong anchoring effect was revealed in the case of the Au/Ti clusters, because of a much increased local interaction with the support (by a factor 5 in the simulations), which strongly inhibits sintering, especially when the clusters are more than ∼0.60 nm apart. Heating the clusters at 100 °C for 1 h in a mixture of O2 and CO, to simulate CO oxidation conditions, led to some segregation in the Au/Ti clusters, but in line with the model computational investigation, Au atoms were still present on the surface. Thus size-selected, deposited nanoalloy Au/Ti clusters appear to be promising candidates for sustainable gold-based nanocatalysis.

5.
J Phys Condens Matter ; 28(36): 364005, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27406792

RESUMO

Recently, a well-ordered silicatene/silicon-carbide hybrid thin-film supported on Ru(0 0 0 1) has been reported (2015 Surf. Sci. 632 9-13). The thin-film consist of a monolayer of corner sharing (SiO4)-tetrahedra on top of a (Si2C3) monolayer supported on the Ru(0 0 0 1) surface. This silicatene/silicon-carbide hybrid system may exhibit interesting properties for nano-technological applications and represents another example of a 2D material. We explore the physical and chemical properties of the silicatene/silicon-carbide thin-film using DFT and compare the vibrational spectra with existing experimental data. The characteristics of the silicatene/silicon-carbide hybrid system are compared with those of the bilayer-silicatene (pure SiO2 film). We found large differences in the adsorption modes of the two thin-films on the Ru(0 0 0 1) support. Whereas the bilayer-silicatene physisorbs on the Ru(0 0 0 1) surface, the silicatene/silicon-carbide layer binds via chemisorption. The chemical properties of the two thin-films were probed by adsorption of H atoms at various positions, as well as by Al-doping and the formation of hydroxyl groups (Al-OH). These results show that despite the similar structure of the top layer and the identical metal support (Ru), the mixed silicatene/silicon-carbide system behaves quite differently from the pure silica two-layer counterpart.

6.
Phys Chem Chem Phys ; 17(34): 22342-60, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26248205

RESUMO

The charge state of Ag and Au atoms and clusters (Ag4 and Au4, Ag5 and Au5) adsorbed on defective TiO2 anatase(101) and tetragonal ZrO2(101) has been systematically investigated as a function of oxide doping and defectivity using a DFT+U approach. As intrinsic defects, we have considered the presence of oxygen vacancies. As extrinsic defects, substitutional nitrogen- and niobium-doping have been investigated, respectively. Both surface and sub-surface defects and dopants have been considered. Whereas on surfaces with oxygen vacancies or Nb-doping, atoms and clusters may become negatively charged, N-doping always leads to the formation of positively charged adsorbates, independently of the supporting material (TiO2 or ZrO2). This suggests the possibility to tune the electronic properties of supported metal clusters by selective doping of the oxide support, an effect that may result in complete changes in chemical reactivity.


Assuntos
Metais Pesados/química , Nitrogênio/química , Óxidos/química , Teoria Quântica , Titânio/química , Zircônio/química , Adsorção , Elétrons , Ouro/química , Modelos Moleculares , Conformação Molecular , Nióbio/química , Prata/química , Propriedades de Superfície
7.
Chemphyschem ; 16(5): 949-53, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25652664

RESUMO

The self-assembly behavior of five star-shaped pyridyl-functionalized 1,3,5-triethynylbenzenes was studied at the interface between an organic solvent and the basal plane of graphite by scanning tunneling microscopy. The mono- and bipyridine derivatives self-assemble in closely packed 2D crystals, whereas the derivative with the more bulky terpyridines crystallizes with porous packing. DFT calculations of a monopyridine derivative on graphene, support the proposed molecular model. The calculations also reveal the formation of hydrogen bonds between the nitrogen atoms and a hydrogen atom of the neighboring central unit, as a small nonzero tunneling current was calculated within this region. The title compounds provide a versatile model system to investigate the role of multivalent steric interactions and hydrogen bonding in molecular monolayers.


Assuntos
2,2'-Dipiridil/química , Derivados de Benzeno/química , Piridinas/química , Ligação de Hidrogênio , Microscopia de Tunelamento , Modelos Moleculares , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA