Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
mSphere ; 6(1)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504664

RESUMO

Staphylococcus aureus causes significant infections, responsible for toxic shock syndrome (TSS), hemorrhagic pneumonia, and many other infections. S. aureus secretes virulence factors, which include superantigens such as staphylococcal enterotoxins (SEs). We examined differences in immunobiological activities and disease associations among the four human SEC subtypes. We sequenced the sec gene from 35 human isolates to determine SEC subtypes. Upon finding differences in disease association, we used a [3H]thymidine uptake assay to examine SEC-induced superantigenicity. We also employed a rabbit model of SEC-induced TSS. SEC-2 and SEC-3 were associated with menstrual TSS and vaginal isolates from healthy women, whereas SEC-4 was produced by USA400 isolates causing purpura fulminans and hemorrhagic pneumonia. SEC subtypes differed in potency in a TSS rabbit model and in superantigenicity. There was no difference in superantigenicity when tested on human peripheral blood mononuclear cells. Despite differences, all SECs reacted with polyclonal antibodies raised against the other SEC subtypes. The associations of SEC subtypes with different infections suggest that S. aureus produces virulence factors according to host niches.IMPORTANCE Staphylococcal enterotoxin C has four subtypes that cause human diseases, designated SEC-1 to -4. This study shows that SEC-2 and SEC-3 are the most toxic subtypes in a rabbit model and are associated with human vaginal infections or colonization in association with another superantigen, toxic shock syndrome toxin 1. SEC-4 is associated with purpura fulminans and hemorrhagic pneumonia. SEC-1 is uncommon. The data suggest that there is some selective pressure for the SEC subtypes to be associated with certain human niches.

2.
mSphere ; 5(5)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028686

RESUMO

Staphylococcus aureus and Streptococcus pyogenes are significant human pathogens, causing infections at multiple body sites, including across the skin. Both are organisms that cause human diseases and secrete superantigens, including toxic shock syndrome toxin-1 (TSST-1), staphylococcal enterotoxins (SEs), and streptococcal pyrogenic exotoxins (SPEs). On the skin, human keratinocytes represent the first cell type to encounter these superantigens. We employed transcriptome sequencing (RNA-seq) to evaluate the human primary keratinocyte response to both TSST-1 and staphylococcal enterotoxin B (SEB) in triplicate analyses. Both superantigens caused large numbers of genes to be up- and downregulated. The genes that exhibited 2-fold differential gene expression compared to vehicle-treated cells, whether up- or downregulated, totaled 5,773 for TSST-1 and 4,320 for SEB. Of these, 4,482 were significantly upregulated by exposure of keratinocytes to TSST-1, whereas 1,291 were downregulated. For SEB, expression levels of 3,785 genes were upregulated, whereas those of 535 were downregulated. There was the expected high overlap in both upregulation (3,412 genes) and downregulation (400 genes). Significantly upregulated genes included those associated with chemokine production, with the possibility of stimulation of inflammation. We also tested an immortalized human keratinocyte line, from a different donor, for chemokine response to four superantigens. TSST-1 and SEB caused production of interleukin-8 (IL-8), MIP-3α, and IL-33. SPEA and SPEC were evaluated for stimulation of expression of IL-8 as a representative chemokine; both stimulated production of IL-8.IMPORTANCE Staphylococcus aureus and Streptococcus pyogenes are common human pathogens, causing infections that include the skin. Both pathogens produce a family of secreted toxins called superantigens, which have been shown to be important in human diseases. The first cell types encountered by superantigens on skin are keratinocytes. Our studies demonstrated, that the human keratinocyte pathway, among other pathways, responds to superantigens with production of chemokines, setting off inflammation. This inflammatory response may be harmful, facilitating opening of the skin barrier.

3.
FEBS J ; 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770775

RESUMO

Kawasaki syndrome (KS) is an acute vasculitis in children complicated by the development of heart disease. Despite its description over 50 years ago, the etiology of coronary artery disease in KS is unknown. High dose intravenous immunoglobulin is the most effective approach to reduce cardiovascular complications. It remains unclear why patients with KS develop coronary artery aneurysms. A subset of patients is resistant to immunoglobulin therapy. Given the heterogeneity of clinical features, variability of history, and therapeutic response, KS may be a cluster of phenotypes triggered by multiple infectious agents and influenced by various environmental, genetic, and immunologic responses. The cause of KS is unknown, and a diagnostic test remains lacking. A better understanding of mechanisms leading to acute KS would contribute to a more precision medicine approach for this complex disease. In the current viewpoint, we make the case for microbial superantigens as important causes of KS.

4.
mSphere ; 5(4)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727862

RESUMO

Staphylococcus aureus is a highly significant infection problem in health care centers, particularly after surgery. It has been shown that nearly 80% of S. aureus infections following surgery are the same as those in the anterior nares of patients, suggesting that the anterior nares is the source of the infection strain. This has led to the use of mupirocin ointment being applied nasally to reduce infections; mupirocin resistance is being observed. This study was undertaken to determine whether gel composed of 5% glycerol monolaurate solubilized in a glycol-based, nonaqueous gel (5% GML gel) could be used as an alternative. In our study, 40 healthy human volunteers swabbed their anterior nares for 3 days with the 5% GML gel. Prior to swabbing and 8 to 12 h after swabbing, S. aureus and coagulase-negative staphylococcal CFU per milliliter were determined by plating the swabs on mannitol salt agar. Fourteen of the volunteers had S. aureus in their nares prior to 5% GML gel treatment, most persons with the organisms present in both nares; five had pure cultures of S. aureus All participants without pure culture of S. aureus were cocolonized with S. aureus and coagulase-negative staphylococci. Five of the S. aureus strains produced the superantigens commonly associated with toxic shock syndrome, though none of the participants became ill. For both S. aureus and coagulase-negative staphylococci, the 5% GML gel treatment resulted in a 3-log-unit reduction in microorganisms. For S. aureus, the reduction persisted for 2 or 3 days.IMPORTANCE In this microflora study, we show that a 5% glycerol monolaurate nonaqueous gel is safe for use in the anterior nares. The gel was effective in reducing Staphylococcus aureus nasally, a highly significant hospital-associated pathogen. The gel may be a useful alternative or additive to mupirocin ointment for nasal use prior to surgery, noting that 80% of hospital-associated S. aureus infections are due to the same organism found in the nose. This gel also kills all enveloped viruses tested and should be considered for studies to reduce infection and transmission of coronaviruses and influenza viruses.

5.
EClinicalMedicine ; 21: 100316, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32382715
6.
Proc Natl Acad Sci U S A ; 117(20): 10989-10999, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354997

RESUMO

Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas , Sequência de Bases , Biofilmes , Domínio Catalítico , Modelos Animais de Doenças , Endocardite , Enterotoxinas , Feminino , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Masculino , Modelos Moleculares , Mutação , Oxirredução , Domínios Proteicos , Coelhos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sepse , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Superantígenos , Thermotoga maritima , Virulência/genética , Virulência/fisiologia
7.
mBio ; 11(3)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371599

RESUMO

The vaginal microbiota influences sexual transmission of human immunodeficiency virus type 1 (HIV-1). Colonization of the vaginal tract is normally dominated by Lactobacillus species. Both Lactobacillus and Enterococcus faecalis may secrete reutericyclin, which inhibits the growth of a variety of pathogenic bacteria. Increasing evidence suggests a potential therapeutic role for an analogue of reutericyclin, glycerol monolaurate (GML), against microbial pathogens. Previous studies using a macaque vaginal simian immunodeficiency virus (SIV) transmission model demonstrated that GML reduces transmission and alters immune responses to infection in vitro Previous studies showed that structural analogues of GML negatively impact other enveloped viruses. We sought to expand understanding of how GML inhibits HIV-1 and other enveloped viruses and show that GML restricts HIV-1 entry post-CD4 engagement at the step of coreceptor binding. Further, HIV-1 and yellow fever virus (YFV) particles were more sensitive to GML interference than particles "matured" by proteolytic processing. We show that high-pressure-liquid-chromatography (HPLC)-purified reutericyclin and reutericyclin secreted by Lactobacillus inhibit HIV-1. These data emphasize the importance and protective nature of the normal vaginal flora during viral infections and provide insights into the antiviral mechanism of GML during HIV-1 infection and, more broadly, to other enveloped viruses.IMPORTANCE A total of 340 million sexually transmitted infections (STIs) are acquired each year. Antimicrobial agents that target multiple infectious pathogens are ideal candidates to reduce the number of newly acquired STIs. The antimicrobial and immunoregulatory properties of GML make it an excellent candidate to fit this critical need. Previous studies established the safety profile and antibacterial activity of GML against both Gram-positive and Gram-negative bacteria. GML protected against high-dose SIV infection and reduced inflammation, which can exacerbate disease, during infection. We found that GML inhibits HIV-1 and other human-pathogenic viruses (yellow fever virus, mumps virus, and Zika virus), broadening its antimicrobial range. Because GML targets diverse infectious pathogens, GML may be an effective agent against the broad range of sexually transmitted pathogens. Further, our data show that reutericyclin, a GML analog expressed by some lactobacillus species, also inhibits HIV-1 replication and thus may contribute to the protective effect of Lactobacillus in HIV-1 transmission.


Assuntos
Antivirais/farmacologia , Lactobacillus/metabolismo , Lauratos/farmacologia , Monoglicerídeos/farmacologia , Proteínas do Envelope Viral/metabolismo , Vírus/efeitos dos fármacos , Animais , Antivirais/metabolismo , Feminino , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Lauratos/metabolismo , Monoglicerídeos/metabolismo , Receptores Virais/metabolismo , Ácido Tenuazônico/análogos & derivados , Ácido Tenuazônico/metabolismo , Ácido Tenuazônico/farmacologia , Vagina/microbiologia , Ligação Viral , Internalização do Vírus , Vírus/metabolismo
8.
Clin Microbiol Rev ; 33(3)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32461307

RESUMO

In the 1980s, menstrual toxic shock syndrome (mTSS) became a household topic, particularly among mothers and their daughters. The research performed at the time, and for the first time, exposed the American public as well as the biomedical community, in a major way, to understanding disease progression and investigation. Those studies led to the identification of the cause, Staphylococcus aureus and the pyrogenic toxin superantigen TSS toxin 1 (TSST-1), and many of the risk factors, for example, tampon use. Those studies in turn led to TSS warning labels on the outside and inside of tampon boxes and, as important, uniform standards worldwide of tampon absorbency labeling. This review addresses our understanding of the development and conclusions related to mTSS and risk factors. We leave the final message that even though mTSS is not commonly in the news today, cases continue to occur. Additionally, S. aureus strains cycle in human populations in roughly 10-year intervals, possibly dependent on immune status. TSST-1-producing S. aureus bacteria appear to be reemerging, suggesting that physician awareness of this emergence and mTSS history should be heightened.

9.
Medicine (Baltimore) ; 99(15): e19746, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32282735

RESUMO

RATIONALE: Toxic shock syndrome (TSS) typically is an acute onset multi-organ infection caused by TSS toxin-1 producing Staphylococcus aureus. Herein we describe a highly unusual case report. PATIENT CONCERNS: A male patient self-referred to the University of Minnesota Hospital with a chronic history of S aureus infection with accompanying fever, hypotension, and nonhealing, football-sized lesion on his leg. DIAGNOSIS: An unusual case presentation of TSS/hyperimmunoglobulin E syndrome is described. The patient had a leg wound from which TSS toxin-1 S aureus was isolated. The patient exhibited characteristic skewing of T cells to those with variable region, ß-chain T cell receptor-2. Other patients have been seen with related presentations. INTERVENTIONS: The following therapeutic regimen was instituted: vigorous antibacterial scrubs several times daily plus intravenous Ancef 3 days each month; intravenous infusions of immunoglobulin G infusions (28 gm) every 3 weeks; and weekly subcutaneous injections of recombinant granulocyte colony-stimulating factor. OUTCOME: Improvement was obvious within 3 months: no further cellulitic episodes occurred; the patient regained 95 pounds in 9 months; blanching and cyanosis of fingers disappeared within 3 months as did intractable pain although mild hypesthesias continued for 2 years; erythroderma resolved, and repeat skin biopsies performed after 2 years no longer demonstrated T cell receptor skewing. Although IgE levels have not completely returned to normal, the patient remains in excellent health. LESSONS: We propose that staphylococcal TSST-1 was responsible for the serious problems suffered by this patient as suggested by the following features: rapid onset of chronic, life-threatening, disorder that began with an episode of staphylococcal sepsis; the extraordinary elevation of IgE levels in this previously non-atopic individual; the acquired severe granulocyte chemotactic defect that accompanied this hyperimmunoglobulinemia ("Job Syndrome") with its accompanying wound-healing defect; and the striking diffuse erythroderma, including palmar erythema ("Red Man Syndrome") with hypotension and fever that also characterizes TSS.


Assuntos
Síndrome de Job/microbiologia , Choque Séptico/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Administração Intravenosa , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Cefazolina/administração & dosagem , Cefazolina/uso terapêutico , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/uso terapêutico , Infusões Intravenosas , Injeções Subcutâneas , Síndrome de Job/diagnóstico , Síndrome de Job/etiologia , Perna (Membro)/patologia , Masculino , Pessoa de Meia-Idade , Choque Séptico/diagnóstico , Choque Séptico/etiologia , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/patologia , Resultado do Tratamento , Ferimentos e Lesões/microbiologia
10.
J Biol Chem ; 295(2): 348-362, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31757809

RESUMO

The envelope glycoproteins (Envs) of HIV-1 are embedded in the cholesterol-rich lipid membrane of the virus. Chemical depletion of cholesterol from HIV-1 particles inactivates their infectivity. We observed that diverse HIV-1 strains exhibit a range of sensitivities to such treatment. Differences in sensitivity to cholesterol depletion could not be explained by variation in Env components known to interact with cholesterol, including the cholesterol-recognition motif and cytoplasmic tail of gp41. Using antibody-binding assays, measurements of virus infectivity, and analyses of lipid membrane order, we found that depletion of cholesterol from HIV-1 particles decreases the conformational stability of Env. It enhances exposure of partially cryptic epitopes on the trimer and increases sensitivity to structure-perturbing treatments such as antibodies and cold denaturation. Substitutions in the cholesterol-interacting motif of gp41 induced similar effects as depletion of cholesterol. Surface-acting agents, which are incorporated into the virus lipid membrane, caused similar effects as disruption of the Env-cholesterol interaction. Furthermore, substitutions in gp120 that increased structural stability of Env (i.e. induced a "closed" conformation of the trimer) increased virus resistance to cholesterol depletion and to the surface-acting agents. Collectively, these results indicate a critical contribution of the viral membrane to the stability of the Env trimer and to neutralization resistance against antibodies. Our findings suggest that the potency of poorly neutralizing antibodies, which are commonly elicited in vaccinated individuals, may be markedly enhanced by altering the lipid composition of the viral membrane.


Assuntos
Anticorpos Neutralizantes/metabolismo , Colesterol/metabolismo , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Células HEK293 , Humanos , Microdomínios da Membrana/metabolismo , Estabilidade Proteica , Internalização do Vírus
11.
Eur J Clin Microbiol Infect Dis ; 39(1): 31-38, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31853743

RESUMO

Tampons are associated with toxic shock syndrome (mTSS). One reason for this association is oxygen introduction within tampons into the anaerobic vagina. Oxygen is required for Staphylococcus aureus to produce TSS toxin-1 (TSST-1). There have been changes in use of medical devices to control menstrual flow, including increased use of menstrual discs and cups. These devices composed of solid, flexible materials do not absorb menstrual fluid and thus do not trap oxygen. This study evaluates tampons and non-absorbent devices for effect on S. aureus and TSST-1 production. There are three in vitro tests to evaluate devices for effect on TSST-1 production: (1) stationary flask, (2) shake flask, and (3) tampon sac. In this study, 100% rayon and 100% cotton tampons with three absorbencies, contraceptive diaphragms, and menstrual discs and cups were tested for effect on S. aureus growth and TSST-1 production. Product composition did not affect bacterial growth or TSST-1 production. Tampons showed no effect on S. aureus growth compared with no-tampon controls, but tampons showed enhanced TSST-1 production as a function of trapped oxygen in stationary cultures and tampon sacs but not in shake flasks. The non-absorbent devices showed no enhanced S. aureus growth or TSST-1 production compared with no-device controls. These studies are consistent with the association of tampons with mTSS as a function of absorbency, but they suggest the occasional association of mTSS with non-absorbent devices may be coincidental as opposed to co-causative.


Assuntos
Toxinas Bacterianas/análise , Dispositivos Anticoncepcionais Femininos/normas , Enterotoxinas/análise , Produtos de Higiene Menstrual/normas , Staphylococcus aureus/crescimento & desenvolvimento , Superantígenos/análise , Vagina/microbiologia , Celulose , Fibra de Algodão , Feminino , Humanos , Oxigênio/metabolismo , Choque Séptico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo
12.
mSphere ; 4(6)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31826969

RESUMO

Staphylococcus aureus is the leading cause of skin and soft tissue infections, bacteremia, infective endocarditis, osteoarticular, pleuropulmonary, and device-related infections. Virulence factors secreted by S. aureus, including superantigens and cytotoxins, play significant roles in driving disease. The ability to identify virulence factors present at the site of infection will be an important tool in better identifying and understanding how specific virulence factors contribute to disease. Previously, virulence factor production has been determined by culturing S. aureus isolates and detecting the mRNA of specific virulence factors. We demonstrated for the first time that virulence factors can be directly detected at the protein level from human samples, removing the need to first culture isolated bacteria. Superantigens and cytotoxins were detected and quantified with a Western dot blot assay by using reconstituted skin swabs obtained from patients with atopic dermatitis. This methodology will significantly enhance our ability to investigate the complex host-microbe environment and the effects various therapies have on virulence factor production. Overall, the ability to directly quantify virulence factors present at the site of infection or colonization will enhance our understanding of S. aureus-related diseases and help identify optimal treatments.IMPORTANCE For the first time, we show that secreted staphylococcal virulence factors can be quantified at the protein level directly from skin swabs obtained from the skin of atopic dermatitis patients. This technique eliminates the need to culture Staphylococcus aureus and then test the strain's potential to produce secreted virulence factors. Our methodology shows that secreted virulence factors are present on the skin of atopic patients and provides a more accurate means of evaluating the physiological impact of S. aureus in inflammatory diseases such as atopic dermatitis.


Assuntos
Dermatite Atópica/complicações , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Fatores de Virulência/biossíntese , Dermatite Atópica/microbiologia , Humanos , Proteoma/análise , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Staphylococcus aureus/genética , Fatores de Virulência/genética
13.
Genes (Basel) ; 10(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842331

RESUMO

BACKGROUND: Staphylococcus aureus is a highly prevalent respiratory pathogen in cystic fibrosis (CF). It is unclear how this organism establishes chronic infections in CF airways. We hypothesized that S. aureus isolates from patients with CF would share common virulence properties that enable chronic infection. METHODS: 77 S. aureus isolates were obtained from 45 de-identified patients with CF at the University of Iowa. We assessed isolates phenotypically and used genotyping assays to determine the presence or absence of 18 superantigens (SAgs). RESULTS: We observed phenotypic diversity among S. aureus isolates from patients with CF. Genotypic analysis for SAgs revealed 79.8% of CF clinical isolates carried all six members of the enterotoxin gene cluster (EGC). MRSA and MSSA isolates had similar prevalence of SAgs. We additionally observed that EGC SAgs were prevalent in S. aureus isolated from two geographically distinct CF centers. CONCLUSIONS: S. aureus SAgs belonging to the EGC are highly prevalent in CF clinical isolates. The greater prevalence in these SAgs in CF airway specimens compared to skin isolates suggests that these toxins confer selective advantage in the CF airway.


Assuntos
Fibrose Cística/genética , Fibrose Cística/microbiologia , Staphylococcus aureus/genética , Adolescente , Adulto , Criança , Pré-Escolar , Enterotoxinas/genética , Feminino , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/genética , Família Multigênica/genética , Prevalência , Infecções Estafilocócicas/epidemiologia , Superantígenos/análise , Superantígenos/genética , Virulência
14.
Sci Rep ; 9(1): 14550, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601928

RESUMO

Human milk has antimicrobial compounds and immunomodulatory activities. We investigated glycerol monolaurate (GML) in human milk versus bovine milk and infant formula for antimicrobial and anti-inflammatory activities. Human milk contained approximately 3000 µg/ml of GML, compared to 150 µg/ml in bovine milk and none in infant formula. For bacteria tested (Staphylococcus aureus, Bacillus subtilis, Clostridium perfringens, Escherichia coli), except Enterococcus faecalis, human milk was more antimicrobial than bovine milk and formula. The Enterococcus faecalis strain, which was not inhibited, produced reutericyclin, which is an analogue of GML and functions as a growth stimulant in bacteria that produce it. Removal of GML and other lipophilic molecules from human milk by ethanol extraction resulted in a loss of antibacterial activity, which was restored by re-addition of GML. GML addition caused bovine milk to become antimicrobial. Human milk but not bovine milk or formula inhibited superantigen and bacterial-induced IL-8 production by model human epithelial cells. GML may contribute beneficially to human milk compared to bovine milk or infant formula.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Lauratos/farmacologia , Leite Humano/química , Monoglicerídeos/farmacologia , Animais , Bacillus subtilis/efeitos dos fármacos , Bovinos , Clostridium perfringens/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Inflamação , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Ácido Tenuazônico/análogos & derivados , Ácido Tenuazônico/metabolismo
15.
mBio ; 10(2)2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890614

RESUMO

Mucosal and skin tissues form barriers to infection by most bacterial pathogens. Staphylococcus aureus causes diseases across these barriers in part dependent on the proinflammatory properties of superantigens. We showed, through use of a CRISPR-Cas9 CD40 knockout, that the superantigens toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxins (SEs) B and C stimulated chemokine production from human vaginal epithelial cells (HVECs) through human CD40. This response was enhanced by addition of antibodies against CD40 through an unknown mechanism. TSST-1 was better able to stimulate chemokine (IL-8 and MIP-3α) production by HVECs than SEB and SEC, suggesting this is the reason for TSST-1's exclusive association with menstrual TSS. A mutant of TSST-1, K121A, caused TSS in a rabbit model when administered vaginally but not intravenously, emphasizing the importance of the local vaginal environment. Collectively, our data suggested that superantigens facilitate infections by disruption of mucosal barriers through their binding to CD40, with subsequent expression of chemokines. The chemokines facilitate TSS and possibly other epithelial conditions after attraction of the adaptive immune system to the local environment.IMPORTANCE Menstrual toxic shock syndrome (TSS) is a serious infectious disease associated with vaginal colonization by Staphylococcus aureus producing the exotoxin TSS toxin 1 (TSST-1). We show that menstrual TSS occurs after TSST-1 interaction with an immune costimulatory molecule called CD40 on the surface of vaginal epithelial cells. Other related toxins, where the entire family is called the superantigen family, bind to CD40, but not with a high-enough apparent affinity to cause TSS; thus, TSST-1 is the only exotoxin superantigen associated. Once the epithelial cells become activated by TSST-1, they produce soluble molecules referred to as chemokines, which in turn facilitate TSST-1 activation of T lymphocytes and macrophages to cause the symptoms of TSS. Identification of small-molecule inhibitors of the interaction of TSST-1 with CD40 may be useful so that they may serve as additives to medical devices, such as tampons and menstrual cups, to reduce the incidence of menstrual TSS.


Assuntos
Antígenos CD40/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Staphylococcus aureus/fisiologia , Superantígenos/metabolismo , Toxinas Bacterianas/metabolismo , Antígenos CD40/genética , Células Cultivadas , Enterotoxinas/metabolismo , Técnicas de Inativação de Genes , Humanos
16.
Microbiol Spectr ; 7(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737912

RESUMO

Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.


Assuntos
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade , Superantígenos/imunologia , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Humanos , Filogenia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Superantígenos/genética , Fatores de Virulência/metabolismo
17.
mSphere ; 3(6)2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463926

RESUMO

Glycerol monolaurate is a broadly antimicrobial fatty acid monoester, killing bacteria, fungi, and enveloped viruses. The compound kills stationary-phase cultures of Bacillus anthracis, suggesting that the molecule may kill spores. In this study, we examined the ability of glycerol monolaurate alone or solubilized in a nonaqueous gel to kill vegetative cells and spores of aerobic B. anthracis, B. subtilis, and B. cereus and anaerobic Clostridium perfringens and Clostridium (Clostridioides) difficile. Glycerol monolaurate alone was bactericidal for all five organisms tested. Glycerol monolaurate alone was effective in killing spores. When solubilized in a nonaqueous gel, the glycerol monolaurate gel was bactericidal for all spores tested. The data suggest that glycerol monolaurate nonaqueous gel could be effective in decontaminating environmental and body surfaces, such as skin.IMPORTANCE Bacillus and Clostridium spores are known to be highly resistant to killing, persisting on environmental and human body surfaces for long periods of time. In favorable environments, these spores may germinate and cause human diseases. It is thus important to identify agents that can be used on both environmental and human skin and mucosal surfaces and that are effective in killing spores. We previously showed that the fatty acid monoester glycerol monolaurate (GML) kills stationary-phase cultures of Bacillus anthracis Since such cultures are likely to contain spores, it is possible that GML and a human-use-approved GML nonaqueous gel would kill Bacillus and Clostridium spores. The significance of our studies is that we have identified GML, and, to a greater extent, GML solubilized in a nonaqueous gel, as effective in killing spores from both bacterial genera.


Assuntos
Antibacterianos/farmacologia , Bacillus/efeitos dos fármacos , Clostridium/efeitos dos fármacos , Géis/farmacologia , Lauratos/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Monoglicerídeos/farmacologia , Esporos Bacterianos/efeitos dos fármacos
18.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111566

RESUMO

Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.


Assuntos
Exossomos/metabolismo , Infecções por HIV/genética , HIV-1/genética , NF-kappa B/metabolismo , Sêmen/metabolismo , Fator de Transcrição Sp1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Exossomos/genética , Regulação Viral da Expressão Gênica , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Repetição Terminal Longa de HIV/genética , Humanos , Masculino , NF-kappa B/genética , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fator de Transcrição Sp1/genética , Transcrição Genética , Ativação Transcricional , Replicação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
19.
PLoS Pathog ; 13(9): e1006461, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28880920

RESUMO

Bacterial superantigens (SAgs) cause Vß-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vß-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis.


Assuntos
Enterotoxinas/metabolismo , Exfoliatinas/farmacologia , Neutrófilos/efeitos dos fármacos , Infecções Estafilocócicas , Superantígenos/farmacologia , Animais , Exfoliatinas/metabolismo , Humanos , Ativação Linfocitária/imunologia , Neutrófilos/imunologia , Coelhos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Superantígenos/imunologia
20.
Toxins (Basel) ; 9(7)2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657583

RESUMO

Staphylococcus aureus (S. aureus) produces many different exotoxins including the gamma-toxins, HlgAB and HlgCB. Gamma-toxins form pores in both leukocyte and erythrocyte membranes, resulting in cell lysis. The genes encoding gamma-toxins are present in most strains of S. aureus, and are commonly expressed in clinical isolates recovered from menstrual Toxic Shock Syndrome (mTSS) patients. This study set out to investigate the cytotoxic and proinflammatory effects of gamma-toxins on vaginal epithelial surfaces. We found that both HlgAB and HlgCB were cytotoxic to cultured human vaginal epithelial cells (HVECs) and induced cytokine production at sub-cytotoxic doses. Cytokine production induced by gamma-toxin treatment of HVECs was found to involve epidermal growth factor receptor (EGFR) signaling and mediated by shedding of EGFR ligands from the cell surface. The gamma-toxin subunits displayed differential binding to HVECs (HlgA 93%, HlgB 97% and HlgC 28%) with both components (HlgAB or HlgCB) required for maximum detectable binding and significant stimulation of cytokine production. In studies using full thickness ex vivo porcine vaginal mucosa, HlgAB or HlgCB stimulated a dose-dependent cytokine response, which was reduced significantly by inhibition of EGFR signaling. The effects of gamma-toxins on porcine vaginal tissue and cultured HVECs were validated using ex vivo human ectocervical tissue. Collectively, these studies have identified the EGFR-signaling pathway as a key component in gamma-toxin-induced proinflammatory changes at epithelial surfaces and highlight a potential therapeutic target to diminish toxigenic effects of S. aureus infections.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Receptores ErbB/metabolismo , Proteínas Hemolisinas/toxicidade , Inflamação/metabolismo , Vagina/efeitos dos fármacos , Animais , Colo do Útero/efeitos dos fármacos , Colo do Útero/metabolismo , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/antagonistas & inibidores , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Membrana Mucosa/efeitos dos fármacos , Membrana Mucosa/metabolismo , Coelhos , Transdução de Sinais/efeitos dos fármacos , Suínos , Vagina/citologia , Vagina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA