Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Biomed Res Int ; 2021: 8899699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628828


The in vivo characterization of the passive mechanical properties of the human triceps surae musculotendinous unit is important for gaining a deeper understanding of the interactive responses of the tendon and muscle tissues to loading during passive stretching. This study sought to quantify a comprehensive set of passive muscle-tendon properties such as slack length, stiffness, and the stress-strain relationship using a combination of ultrasound imaging and a three-dimensional motion capture system in healthy adults. By measuring tendon length, the cross-section areas of the Achilles tendon subcompartments (i.e., medial gastrocnemius and soleus aspects), and the ankle torque simultaneously, the mechanical properties of each individual compartment can be specifically identified. We found that the medial gastrocnemius (GM) and soleus (SOL) aspects of the Achilles tendon have similar mechanical properties in terms of slack angle (GM: -10.96° ± 3.48°; SOL: -8.50° ± 4.03°), moment arm at 0° of ankle angle (GM: 30.35 ± 6.42 mm; SOL: 31.39 ± 6.42 mm), and stiffness (GM: 23.18 ± 13.46 Nmm-1; SOL: 31.57 ± 13.26 Nmm-1). However, maximal tendon stress in the GM was significantly less than that in SOL (GM: 2.96 ± 1.50 MPa; SOL: 4.90 ± 1.88 MPa, p = 0.024), largely due to the higher passive force observed in the soleus compartment (GM: 99.89 ± 39.50 N; SOL: 174.59 ± 79.54 N, p = 0.020). Moreover, the tendon contributed to more than half of the total muscle-tendon unit lengthening during the passive stretch. This unequal passive stress between the medial gastrocnemius and the soleus tendon might contribute to the asymmetrical loading and deformation of the Achilles tendon during motion reported in the literature. Such information is relevant to understanding the Achilles tendon function and loading profile in pathological populations in the future.

Tendão do Calcâneo/fisiologia , Fenômenos Biomecânicos/fisiologia , Músculo Esquelético/fisiologia , Adulto , Articulação do Tornozelo/fisiologia , Eletromiografia , Feminino , Humanos , Masculino , Amplitude de Movimento Articular/fisiologia , Torque
Sci Rep ; 9(1): 11836, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413264


Skeletal muscle architecture significantly influences the performance capacity of a muscle. A DTI-based method has been recently considered as a new reference standard to validate measurement of muscle structure in vivo. This study sought to quantify muscle architecture parameters such as fascicle length (FL), pennation angle (PA) and muscle thickness (tm) in post-stroke patients using diffusion tensor imaging (DTI) and to quantitatively compare the differences with 2D ultrasonography (US) and DTI. Muscle fascicles were reconstructed to examine the anatomy of the medial gastrocnemius, posterior soleus and tibialis anterior in seven stroke survivors using US- and DTI-based techniques, respectively. By aligning the US and DTI coordinate system, DTI reconstructed muscle fascicles at the same scanning plane of the US data can be identified. The architecture parameters estimated based on two imaging modalities were further compared. Significant differences were observed for PA and tm between two methods. Although mean FL was not significantly different, there were considerable intra-individual differences in FL and PA. On the individual level, parameters measured by US agreed poorly with those from DTI in both deep and superficial muscles. The significant differences in muscle parameters we observed suggested that the DTI-based method seems to be a better method to quantify muscle architecture parameters which can provide important information for treatment planning and to personalize a computational muscle model.

Imagem de Tensor de Difusão , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Acidente Vascular Cerebral/diagnóstico por imagem , Sobreviventes , Ultrassonografia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade