Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
EMBO Rep ; : e54305, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35527514

RESUMO

The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.

2.
Cells ; 11(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35563693

RESUMO

The airway epithelium provides the first line of defense to the surrounding environment. However, dysfunctions of this physical barrier are frequently observed in allergic diseases, which are tightly connected with pro- or anti-inflammatory processes. When the epithelial cells are confronted with allergens or pathogens, specific response mechanisms are set in motion, which in homeostasis, lead to the elimination of the invaders and leave permanent traces on the respiratory epithelium. However, allergens can also cause damage in the sensitized organism, which can be ascribed to the excessive immune reactions. The tight interaction of epithelial cells of the upper and lower airways with local and systemic immune cells can leave an imprint that may mirror the pathophysiology. The interaction with effector T cells, along with the macrophages, play an important role in this response, as reflected in the gene expression profiles (transcriptomes) of the epithelial cells, as well as in the secretory pattern (secretomes). Further, the storage of information from past exposures as memories within discrete cell types may allow a tissue to inform and fundamentally alter its future responses. Recently, several lines of evidence have highlighted the contributions from myeloid cells, lymphoid cells, stromal cells, mast cells, and epithelial cells to the emerging concepts of inflammatory memory and trained immunity.

4.
Toxins (Basel) ; 14(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448893

RESUMO

Allergy to Polistes dominula (European paper wasp) venom is of particular relevance in Southern Europe, potentially becoming a threat in other regions in the near future, and can be effectively cured by venom immunotherapy (VIT). As allergen content in extracts may vary and have an impact on diagnostic and therapeutic approaches, the aim was to compare five therapeutic preparations for VIT of P. dominula venom allergy available in Spain. Products from five different suppliers were analyzed by SDS-PAGE and LC-MS/MS and compared with a reference venom sample. Three products with P. dominula venom and one product with a venom mixture of American Polistes species showed a comparable band pattern in SDS-PAGE as the reference sample and the bands of the major allergens phospholipase A1 and antigen 5 were assignable. The other product, which consists of a mixture of American Polistes species, exhibited the typical band pattern in one, but not in another sample from a second batch. All annotated P. dominula allergens were detected at comparable levels in LC-MS/MS analysis of products containing P. dominula venom. Due to a lack of genomic information on the American Polistes species, the remaining products were not analyzed by this method. The major Polistes allergens were present in comparable amounts in the majority, but not in all investigated samples of venom preparations for VIT of P. dominula venom allergy.


Assuntos
Hipersensibilidade , Vespas , Alérgenos , Animais , Cromatografia Líquida , Dessensibilização Imunológica , Espectrometria de Massas em Tandem , Venenos de Vespas
6.
J Mol Med (Berl) ; 100(4): 613-627, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247068

RESUMO

SARS-CoV-2 has evolved to enter the host via the ACE2 receptor which is part of the kinin-kallikrein pathway. This complex pathway is only poorly understood in context of immune regulation but critical to control infection. This study examines SARS-CoV-2-infection and epithelial mechanisms of the kinin-kallikrein-system at the kinin B2 receptor level in SARS-CoV-2-infection that is of direct translational relevance. From acute SARS-CoV-2-positive study participants and -negative controls, transcriptomes of nasal curettages were analyzed. Primary airway epithelial cells (NHBEs) were infected with SARS-CoV-2 and treated with the approved B2R-antagonist icatibant. SARS-CoV-2 RNA RT-qPCR, cytotoxicity assays, plaque assays, and transcriptome analyses were performed. The treatment effect was further studied in a murine airway inflammation model in vivo. Here, we report a broad and strong upregulation of kallikreins and the kinin B2 receptor (B2R) in the nasal mucosa of acutely symptomatic SARS-CoV-2-positive study participants. A B2R-antagonist impeded SARS-CoV-2 replication and spread in NHBEs, as determined in plaque assays on Vero-E6 cells. B2R-antagonism reduced the expression of SARS-CoV-2 entry receptor ACE2, G protein-coupled receptor signaling, and ion transport in vitro and in a murine airway inflammation in vivo model. In summary, this study provides evidence that treatment with B2R-antagonists protects airway epithelial cells from SARS-CoV-2 by inhibiting its replication and spread, through the reduction of ACE2 levels and the interference with several cellular signaling processes. Future clinical studies need to shed light on the airway protection potential of approved B2R-antagonists, like icatibant, in the treatment of early-stage COVID-19. KEY MESSAGES: Induction of kinin B2 receptor in the nose of SARS-CoV-2-positive patients. Treatment with B2R-antagonist protects airway epithelial cells from SARS-CoV-2. B2R-antagonist reduces ACE2 levels in vivo and ex vivo. Protection by B2R-antagonist is mediated by inhibiting viral replication and spread.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/tratamento farmacológico , Epitélio , Humanos , Camundongos , RNA Viral , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo
7.
Environ Res ; 211: 112968, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35240115

RESUMO

Pollen related allergic diseases have been increasing for decades. The reasons for this increase are unknown, but environmental pollution like diesel exhaust seem to play a role. While previous studies explored the effects of pollen extracts, we studied here for the first time priming effects of diesel exhaust on native pollen exposure using a novel experimental setup. METHODS: Human bronchial epithelial BEAS-2B cells were exposed to native birch pollen (real life intact pollen, not pollen extracts) at the air-liquid interface (pollen-ALI). BEAS-2B cells were also pre-exposed in a diesel-ALI to diesel CAST for 2 h (a model for diesel exhaust) and then to pollen in the pollen-ALI 24 h later. Effects were analysed by genome wide transcriptome analysis after 2 h 25 min, 6 h 50 min and 24 h. Selected genes were confirmed by qRT-PCR. RESULTS: Bronchial epithelial cells exposed to native pollen showed the highest transcriptomic changes after about 24 h. About 3157 genes were significantly up- or down-regulated for all time points combined. After pre-exposure to diesel exhaust the maximum reaction to pollen had shifted to about 2.5 h after exposure, plus the reaction to pollen was desensitised as only 560 genes were differentially regulated. Only 97 genes were affected synergistically. Of these, enrichment analysis showed that genes involved in immune and inflammatory response were involved. CONCLUSION: Diesel exhaust seems to prime cells to react more rapidly to native pollen exposure, especially inflammation related genes, a factor known to facilitate the development of allergic sensitization. The marker genes here detected could guide studies in humans when investigating whether modern and outdoor diesel exhaust exposure is still detrimental for the development of allergic disease.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35113319

RESUMO

Sensing of the intestinal microbiota by the host immune system is important to induce protective immune responses. Hence, modification of the gut microbiota might be able to prevent or treat allergies, mediated by proinflammatory Th2 immune responses. The aim was to investigate the ex vivo immunomodulatory effects of the synbiotics Pollagen® and Kallergen®, containing the probiotic bacterial strains Lactobacillus, Lacticaseibacillus and Bifidobacterium, in the context of grass pollen allergy. Peripheral blood mononuclear cells (PBMCs) from grass pollen-allergic patients and healthy controls were stimulated with grass pollen extract (GPE) and synbiotics and Gata3 expression and cytokine secretion analyzed. Monocyte-derived dendritic cells (MoDCs) cells were matured in the presence of GPE and synbiotics, co-cultured with autologous naïve T cells and maturation markers and cytokine secretion analyzed. GPE stimulation of PBMCs from grass pollen-allergic patients resulted in a significant higher production of the Th2 cytokines IL-4, IL-5, IL-9 and IL-13 compared to healthy controls. Gata3+CD4+ T cell induction was independent of the allergic status. The synbiotics promoted IL-10 and IFN-γ secretion and downregulated the GPE-induced Th2-like phenotype. Co-culturing naïve T cells with MoDCs, matured in the presence of GPE and synbiotics, shifted the GPE-induced Th2 cytokine release towards Th1-Th17-promoting conditions in allergic subjects. The investigated synbiotics are effective in downregulating the GPE-induced Th2 immune response in PBMCs from grass pollen-allergic patients as well as in autologous MoDC-T cell stimulation assays. In addition to increased IL-10 release, the data indicates a shift from a Th2- to a more Th1- and Th17-like phenotype.

9.
Allergy ; 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35060125

RESUMO

BACKGROUND: The rates of obesity, its associated diseases, and allergies are raising at alarming rates in most countries. House dust mites (HDM) are highly allergenic and exposure often associates with an urban sedentary indoor lifestyle, also resulting in obesity. The aim of this study was to investigate the epidemiological association and physiological impact of lung inflammation on obesity and glucose homeostasis. METHODS: Epidemiological data from 2207 adults of the population-based KORA FF4 cohort were used to test associations between asthma and rhinitis with metrics of body weight and insulin sensitivity. To obtain functional insights, C57BL/6J mice were intranasally sensitized and challenged with HDM and simultaneously fed with either low-fat or high-fat diet for 12 weeks followed by a detailed metabolic and biochemical phenotyping of the lung, liver, and adipose tissues. RESULTS: We found a direct association of asthma with insulin resistance but not body weight in humans. In mice, co-development of obesity and HDM-induced lung inflammation attenuated inflammation in lung and perigonadal fat, with little impact on body weight, but small shifts in the composition of gut microbiota. Exposure to HDM improved glucose tolerance, reduced hepatosteatosis, and increased energy expenditure and basal metabolic rate. These effects associate with increased activity of thermogenic adipose tissues independent of uncoupling protein 1. CONCLUSIONS: Asthma associates with insulin resistance in humans, but HDM challenge results in opposing effects on glucose homeostasis in mice due to increased energy expenditure, reduced adipose inflammation, and hepatosteatosis.

10.
Allergy ; 77(3): 856-869, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34460953

RESUMO

BACKGROUND: Children with asthma have impaired production of interleukin (IL) 37; in mice, IL-37 reduces hallmarks of experimental allergic asthma (EAA). However, it remains unclear how IL-37 exerts its inhibitory properties in asthma. This study aimed to identify the mechanism(s) by which IL-37 controls allergic inflammation. METHODS: IL-37 target cells were identified by single-cell RNA-seq of IL-1R5 and IL-1R8. Airway tissues were isolated by laser-capture microdissection and examined by microarray-based gene expression analysis. Mononuclear cells (MNC) and airway epithelial cells (AECs) were isolated and stimulated with allergen, IL-1ß, or IL-33 together with recombinant human (rh) IL-37. Wild-type, IL-1R1- and IL-33-deficient mice with EAA were treated with rhIL-37. IL-1ß, IL-33, and IL-37 levels were determined in sputum and nasal secretions from adult asthma patients without glucocorticoid therapy. RESULTS: IL-37 target cells included AECs, T cells, and dendritic cells. In mice with EAA, rhIL-37 led to differential expression of >90 genes induced by IL-1ß and IL-33. rhIL-37 reduced production of Th2 cytokines in allergen-activated MNCs from wild-type but not from IL-1R1-deficient mice and inhibited IL-33-induced Th2 cytokine release. Furthermore, rhIL-37 attenuated IL-1ß- and IL-33-induced pro-inflammatory mediator expression in murine AEC cultures. In contrast to wild-type mice, hIL-37 had no effect on EAA in IL-1R1- or IL-33-deficient mice. We also observed that expression/production ratios of both IL-1ß and IL-33 to IL-37 were dramatically increased in asthma patients compared to healthy controls. CONCLUSION: IL-37 downregulates allergic airway inflammation by counterbalancing the disease-amplifying effects of IL-1ß and IL-33.


Assuntos
Asma , Interleucina-33 , Alérgenos , Animais , Asma/metabolismo , Citocinas , Modelos Animais de Doenças , Humanos , Inflamação , Pulmão/metabolismo , Camundongos , Células Th2
11.
Allergy ; 77(3): 767-777, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343347

RESUMO

The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.


Assuntos
Citocinas , Imunidade , Citocinas/metabolismo , Humanos , Secretoglobinas/metabolismo
12.
Allergy ; 77(3): 907-919, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287971

RESUMO

BACKGROUND: Native allergen extracts or chemically modified allergoids are routinely used to induce allergen tolerance in allergen-specific immunotherapy (AIT), although mechanistic side-by-side studies are rare. It is paramount to balance optimal dose and allergenicity to achieve efficacy warranting safety. AIT safety and efficacy could be addressed by allergen dose reduction and/or use of allergoids and immunostimulatory adjuvants, respectively. In this study, immunological effects of experimental house dust mite (HDM) AIT were investigated applying high-dose HDM extract and low-dose HDM allergoids with and without the adjuvants microcrystalline tyrosine (MCT) and monophosphoryl lipid A (MPL) in a murine model of HDM allergy. METHODS: Cellular, humoral, and clinical effects of the different AIT strategies were assessed applying a new experimental AIT model of murine allergic asthma based on physiological, adjuvant-free intranasal sensitization followed by subcutaneous AIT. RESULTS: While low-dose allergoid and high-dose extract AIT demonstrated comparable potency to suppress allergic airway inflammation and Th2-type cytokine secretion of lung-resident lymphocytes and draining lymph node cells, low-dose allergoid AIT was less effective in inducing a potentially protective IgG1 response. Combining low-dose allergoid AIT with MCT or MCT and dose-adjusted MPL promoted Th1-inducing mechanisms and robust B-cell activation counterbalancing the allergic Th2 immune response. CONCLUSION: Low allergen doses induce cellular and humoral mechanisms counteracting Th2-driven inflammation by using allergoids and dose-adjusted adjuvants. In light of safety and efficacy improvement, future therapeutic approaches may use low-dose allergoid strategies to drive cellular tolerance and adjuvants to modulate humoral responses.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade , Adjuvantes Imunológicos , Alérgenos , Alergoides , Animais , Antígenos de Dermatophagoides , Humanos , Hipersensibilidade/terapia , Inflamação , Camundongos , Extratos Vegetais , Pyroglyphidae
13.
PLoS One ; 16(11): e0259914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34784380

RESUMO

In real life, humans are exposed to whole pollen grains at the air epithelial barrier. We developed a system for in vitro dosing of whole pollen grains at the Air-Liquid Interface (ALI) and studied their effect on the immortalized human bronchial epithelial cell line BEAS-2B. Pollen are sticky and large particles. Dosing pollen needs resuspension of single particles rather than clusters, and subsequent transportation to the cells with little loss to the walls of the instrumentation i.e. in a straight line. To avoid high speed impacting insults to cells we chose sedimentation by gravity as a delivery step. Pollen was resuspended into single particles by pressured air. A pollen dispersion unit including PTFE coating of the walls and reduced air pressure limited impaction loss to the walls. The loss of pollen to the system was still about 40%. A linear dose effect curve resulted in 327-2834 pollen/cm2 (± 6.1%), the latter concentration being calculated as the amount deposited on epithelial cells on high pollen days. After whole pollen exposure, the largest differential gene expression at the transcriptomic level was late, about 7 hours after exposure. Inflammatory and response to stimulus related genes were up-regulated. We developed a whole pollen exposure air-liquid interface system (Pollen-ALI), in which cells can be gently and reliably dosed.


Assuntos
Betula/química , Brônquios/citologia , Perfilação da Expressão Gênica/métodos , Pólen/imunologia , Brônquios/química , Brônquios/efeitos dos fármacos , Linhagem Celular , Citocinas/genética , Células Epiteliais/química , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Fracionamento por Campo e Fluxo , Regulação da Expressão Gênica , Humanos , Interleucina-17/genética , Interleucina-33/genética , Pólen/efeitos adversos
14.
Clin Exp Allergy ; 51(12): 1577-1591, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34514658

RESUMO

BACKGROUND: Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen-allergic patients with and without allergen-specific immunotherapy (AIT). METHODS: Induced sputum samples of healthy controls (HC), AIT-treated and -untreated grass pollen-allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and whole-transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2  levels were measured using ELISA. RESULTS: Two hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR-3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2  levels correlated with ILC2 frequencies, secreted sputum IL-13 levels, inflammatory cell load, sputum eosinophils and symptom burden. CONCLUSIONS: While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR-3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2 -PTGER3 axis.


Assuntos
MicroRNAs , Rinite Alérgica , Alérgenos , Dessensibilização Imunológica , Humanos , Imunidade Inata , Linfócitos , MicroRNAs/genética , Prostaglandinas , Receptores de Prostaglandina/genética , Escarro
15.
Toxins (Basel) ; 13(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437431

RESUMO

Discriminating Polistes dominula and Vespula spp. venom allergy is of growing importance worldwide, as systemic reactions to either species' sting can lead to severe outcomes. Administering the correct allergen-specific immunotherapy is therefore a prerequisite to ensure the safety and health of venom-allergic patients. Component-resolved diagnostics of Hymenoptera venom allergy might be improved by adding additional allergens to the diagnostic allergen panel. Therefore, three potential new allergens from P. dominula venom-immune responsive protein 30 (IRP30), vascular endothelial growth factor C (VEGF C) and phospholipase A2 (PLA2)-were cloned, recombinantly produced and biochemically characterized. Sera sIgE titers of Hymenoptera venom-allergic patients were measured in vitro to assess the allergenicity and potential cross-reactivity of the venom proteins. IRP30 and VEGF C were classified as minor allergens, as sensitization rates lay around 20-40%. About 50% of P. dominula venom-allergic patients had measurable sIgE titers directed against PLA2 from P. dominula venom. Interestingly, PLA2 was unable to activate basophils of allergic patients, questioning its role in the context of clinically relevant sensitization. Although the obtained results hint to a questionable benefit of the characterized P. dominula venom proteins for improved diagnosis of venom-allergic patients, they can contribute to a deeper understanding of the molecular mechanisms of Hymenoptera venoms and to the identification of factors that determine the allergenic potential of proteins.


Assuntos
Alérgenos , Venenos de Artrópodes , Hipersensibilidade , Proteínas de Insetos , Alérgenos/genética , Alérgenos/imunologia , Animais , Venenos de Artrópodes/química , Venenos de Artrópodes/imunologia , Basófilos/imunologia , Humanos , Hipersensibilidade/sangue , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Imunoglobulina E/sangue , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Fosfolipases A2/genética , Fosfolipases A2/imunologia , Proteínas Recombinantes/imunologia , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/imunologia , Vespas
16.
Glob Chang Biol ; 27(22): 5934-5949, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363285

RESUMO

Climate change impacts on the structure and function of ecosystems will worsen public health issues like allergic diseases. Birch trees (Betula spp.) are important sources of aeroallergens in Central and Northern Europe. Birches are vulnerable to climate change as these trees are sensitive to increased temperatures and summer droughts. This study aims to examine the effect of climate change on airborne birch pollen concentrations in Central Europe using Bavaria in Southern Germany as a case study. Pollen data from 28 monitoring stations in Bavaria were used in this study, with time series of up 30 years long. An integrative approach was used to model airborne birch pollen concentrations taking into account drivers influencing birch tree abundance and birch pollen production and projections made according to different climate change and socioeconomic scenarios. Birch tree abundance is projected to decrease in parts of Bavaria at different rates, depending on the climate scenario, particularly in current centres of the species distribution. Climate change is expected to result in initial increases in pollen load but, due to the reduction in birch trees, the amount of airborne birch pollen will decrease at lower altitudes. Conversely, higher altitude areas will experience expansions in birch tree distribution and subsequent increases in airborne birch pollen in the future. Even considering restrictions for migration rates, increases in pollen load are likely in Southwestern areas, where positive trends have already been detected during the last three decades. Integrating models for the distribution and abundance of pollen sources and the drivers that control birch pollen production allowed us to model airborne birch pollen concentrations in the future. The magnitude of changes depends on location and climate change scenario.


Assuntos
Betula , Mudança Climática , Alérgenos , Ecossistema , Pólen
17.
Allergy ; 76(9): 2827-2839, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33969495

RESUMO

BACKGROUND: Studies show that proallergic TH 2 cells decrease after successful allergen-specific immunotherapy (AIT). It is likely that iatrogenic administration of allergens drives these cells to exhaustion due to chronic T-cell receptor stimulation. This study aimed to investigate the exhaustion of T cells in connection with allergen exposure during AIT in mice and two independent patient cohorts. METHODS: OVA-sensitized C57BL/6J mice were challenged and treated with OVA, and the development of exhaustion in local and systemic TH 2 cells was analyzed. In patients, the expression of exhaustion-associated surface markers on TH 2 cells was evaluated using flow cytometry in a cross-sectional grass pollen allergy cohort with and without AIT. The treatment effect was further studied in PBMC collected from a prospective long-term AIT cohort. RESULTS: The exhaustion-associated surface markers CTLA-4 and PD-1 were significantly upregulated on TH 2 cells upon OVA aerosol exposure in OVA-allergic compared to non-allergic mice. CTLA-4 and PD-1 decreased after AIT, in particular on the surface of local lung TH 2 cells. Similarly, CTLA-4 and PD-1 expression was enhanced on TH 2 cells from patients with allergic rhinitis with an even stronger effect in those with concomitant asthma. Using an unbiased Louvain clustering analysis, we discovered a late-differentiated TH 2 population expressing both markers that decreased during up-dosing but persisted long term during the maintenance phase. CONCLUSIONS: This study shows that allergen exposure promotes CTLA-4 and PD-1 expression on TH 2 cells and that the dynamic change in frequencies of exhausted TH 2 cells exhibits a differential pattern during the up-dosing versus the maintenance phases of AIT.


Assuntos
Dessensibilização Imunológica , Leucócitos Mononucleares , Alérgenos , Animais , Estudos Transversais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Estudos Prospectivos
18.
Cell Rep ; 35(1): 108956, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826881

RESUMO

Extensive remodeling of the airways is a major characteristic of chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). To elucidate the importance of a deregulated immune response in the airways for remodeling processes, we established a matching Drosophila model. Here, triggering the Imd (immune deficiency) pathway in tracheal cells induced organ-wide remodeling. This structural remodeling comprises disorganization of epithelial structures and comprehensive epithelial thickening. We show that these structural changes do not depend on the Imd pathway's canonical branch terminating on nuclear factor κB (NF-κB) activation. Instead, activation of a different segment of the Imd pathway that branches off downstream of Tak1 and comprises activation of c-Jun N-terminal kinase (JNK) and forkhead transcription factor of the O subgroup (FoxO) signaling is necessary and sufficient to mediate the observed structural changes of the airways. Our findings imply that targeting JNK and FoxO signaling in the airways could be a promising strategy to interfere with disease-associated airway remodeling processes.


Assuntos
Remodelação das Vias Aéreas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Fatores de Transcrição Forkhead/metabolismo , Imunidade , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Animais , Epitélio/metabolismo , Epitélio/microbiologia , Hiperplasia , Estágios do Ciclo de Vida , MAP Quinase Quinase Quinases/metabolismo , Fatores de Transcrição/metabolismo
19.
Allergy ; 76(8): 2461-2474, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33528894

RESUMO

BACKGROUND: While several systemic immunomodulatory effects of allergen-specific immunotherapy (AIT) have been discovered, local anti-inflammatory mechanisms in the respiratory tract are largely unknown. We sought to elucidate local and epithelial mechanisms underlying allergen-specific immunotherapy in a genome-wide approach. METHODS: We induced sputum in hay fever patients and healthy controls during the pollen peak season and stratified patients by effective allergen immunotherapy or as untreated. Sputum was directly processed after induction and subjected to whole transcriptome RNA microarray analysis. Nasal secretions were analyzed for Secretoglobin1A1 (SCGB1A1) and IL-24 protein levels in an additional validation cohort at three defined time points during the 3-year course of AIT. Subsequently, RNA was extracted and subjected to an array-based whole transcriptome analysis. RESULTS: Allergen-specific immunotherapy inhibited pro-inflammatory CXCL8, IL24, and CCL26mRNA expression, while SCGB1A1, IL7, CCL5, CCL23, and WNT5BmRNAs were induced independently of the asthma status and allergen season. In our validation cohort, local increase of SCGB1A1 occurred concomitantly with the reduction of local IL-24 in upper airways during the course of AIT. Additionally, SCGB1A1 was identified as a suppressor of epithelial gene expression. CONCLUSIONS: Allergen-specific immunotherapy induces a yet unknown local gene expression footprint in the lower airways that on one hand appears to be a result of multiple regulatory pathways and on the other hand reveals SCGB1A1 as novel anti-inflammatory mediator of long-term allergen-specific therapeutic intervention in the local environment.


Assuntos
Dessensibilização Imunológica , Rinite Alérgica Sazonal , Uteroglobina/metabolismo , Alérgenos , Humanos , Sistema Respiratório
20.
Allergy ; 76(6): 1718-1730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33037672

RESUMO

BACKGROUND: Common ragweed has been spreading as a neophyte in Europe. Elevated CO2 levels, a hallmark of global climate change, have been shown to increase ragweed pollen production, but their effects on pollen allergenicity remain to be elucidated. METHODS: Ragweed was grown in climate-controlled chambers under normal (380 ppm, control) or elevated (700 ppm, based on RCP4.5 scenario) CO2 levels. Aqueous pollen extracts (RWE) from control- or CO2 -pollen were administered in vivo in a mouse model for allergic disease (daily for 3-11 days, n = 5) and employed in human in vitro systems of nasal epithelial cells (HNECs), monocyte-derived dendritic cells (DCs), and HNEC-DC co-cultures. Additionally, adjuvant factors and metabolites in control- and CO2 -RWE were investigated using ELISA and untargeted metabolomics. RESULTS: In vivo, CO2 -RWE induced stronger allergic lung inflammation compared to control-RWE, as indicated by lung inflammatory cell infiltrate and mediators, mucus hypersecretion, and serum total IgE. In vitro, HNECs stimulated with RWE increased indistinctively the production of pro-inflammatory cytokines (IL-8, IL-1ß, and IL-6). In contrast, supernatants from CO2 -RWE-stimulated HNECs, compared to control-RWE-stimulated HNECS, significantly increased TNF and decreased IL-10 production in DCs. Comparable results were obtained by stimulating DCs directly with RWEs. The metabolome analysis revealed differential expression of secondary plant metabolites in control- vs CO2 -RWE. Mixes of these metabolites elicited similar responses in DCs as compared to respective RWEs. CONCLUSION: Our results indicate that elevated ambient CO2 levels elicit a stronger RWE-induced allergic response in vivo and in vitro and that RWE increased allergenicity depends on the interplay of multiple metabolites.


Assuntos
Ambrosia , Dióxido de Carbono , Alérgenos , Europa (Continente) , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...