Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 15(2): 301-309, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31793241

RESUMO

Pt nanoparticles are typically decorated as co-catalyst on semiconductors to enhance the photocatalytic performance. Due to the low abundance and high cost of Pt, reaching a high activity with minimized co-catalyst loadings is a key challenge in the field. We explore a dewetting-dealloying strategy to fabricate on TiO2 nanotubes nanoporous Pt nanoparticles, aiming at improving the co-catalyst mass activity for H2 generation. For this, we sputter first Pt-Ni bi-layers of controllable thickness (nm range) on highly ordered TiO2 nanotube arrays, and then induce dewetting-alloying of the Pt-Ni bi-layers by a suitable annealing step in a reducing atmosphere: the thermal treatment causes the Pt and Ni films to agglomerate and at the same time mix with each other, forming on the TiO2 nanotube surface metal islands of a mixed PtNi composition. In a subsequent step we perform chemical dealloying of Ni that is selectively etched out from the bimetallic dewetted islands, leaving behind nanoporous Pt decorations. Under optimized conditions, the nanoporous Pt-decorated TiO2 structures show a>6 times higher photocatalytic H2 generation activity compared to structures modified with a comparable loading of dewetted, non-porous Pt. We ascribe this beneficial effect to the nanoporous nature of the dealloyed Pt co-catalyst, which provides an increased surface-to-volume ratio and thus a more efficient electron transfer and a higher density of active sites at the co-catalyst surface for H2 evolution.

2.
ACS Nano ; 14(1): 337-346, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31841305

RESUMO

The low penetration depth of UV light in mammalian tissue is the critical limitation for the use of TiO2-based photocatalysis in biomedical applications. In this work, we develop an effective near-infrared (NIR)-active photocatalytic platform that consists of a shell structure of upconversion nanocrystals decorated on a core of Au/dark-TiO2. The heart of this system is the strong photocatalytic activity in the visible region enabled by the gold surface-plasmon resonance on dark TiO2 (D-TiO2). Simulation and experiment demonstrate for an optimized Au/D-TiO2 combination a highly enhanced light absorption in the visible range. Using ampicillin sodium (AMP) as model drug, we exemplify the effective use of this principle by demonstrating a NIR light-triggered photocatalytic payload release. Importantly, the photocatalytically generated reactive oxygen species can effectively inactivate AMP-resistant bacteria strains, thus maintaining an antibacterial effect even after all drug is released. Overall, we anticipate that the here-introduced NIR-light-active photocatalytic cascade can considerably widen TiO2-based photocatalysis and its applications into the infrared range.

3.
Chemistry ; 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31788871

RESUMO

Photoelectrochemical (PEC) water splitting is a promising method for the conversion of solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (α-Fe2O3) is one of the most attractive materials for a highly efficient charge carrier generation and collection due to its large specific surface area and the short minority carrier diffusion length. In the present work, we investigate the PEC water splitting performance of nanostructured α-Fe2O3 prepared by anodization followed by annealing in a low oxygen ambient (0.03% O2 in Ar). We find that low oxygen annealing can activate a significant PEC response of α-Fe2O3 even at a low temperature of 400 °C and provide an excellent PEC performance compared with classic air annealing. The photocurrent of the α-Fe2O3 annealed in the low oxygen at 1.5 V vs. RHE results as 0.5 mA/cm2, being 20 times higher than that of annealing in air. The obtained results show that the α-Fe2O3 annealed in low oxygen contains beneficial defects and promotes the transport of holes; it can be attributed to the improvement of conductivity due to the introduction of suitable oxygen vacancies in the α-Fe2O3. Additionally, we demonstrate the photocurrent of α-Fe2O3 annealed in low oxygen ambient can be further enhanced by Zn-Co LDH, which is a co-catalyst of oxygen evolution reaction. This indicates low oxygen annealing generates a promising method to obtain an excellent PEC water splitting performance from α-Fe2O3 photoanodes.

4.
ACS Appl Mater Interfaces ; 11(49): 45665-45673, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31714052

RESUMO

With a large-scale usage of portable electric appliances, a high demand for increasingly high-density energy storage devices has emerged. MoO3 has, in principle, a large potential as a negative electrode material in supercapacitive devices due to high charge densities that can be obtained from its reversible redox reactions. Nevertheless, the extremely poor electrochemical stability of MoO3 in aqueous electrolytes prevents a practical use in high capacitance devices. In this work, we describe how to overcome this severe stability issue by forming amorphous molybdenum oxide/tantalum oxide nanotubes by anodic oxidation of a Mo-Ta alloy. The presence of a critical amount of Ta oxide (>20 at. %) prevents the electrochemical decay of the MoO3 phase and thus yields an extremely high stability. Due to the protection provided by tantalum oxide, no capacitance losses are measureable after 10,000 charging/discharging cycles.

5.
Materials (Basel) ; 12(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547276

RESUMO

Titanium dioxide (TiO2) nanotube coated substrates have revolutionized the concept of implant in a number of ways, being endowed with superior osseointegration properties and local drug delivery capacity. While accumulating reports describe the influence of nanotube diameter on cell behavior, little is known about the effects of nanotube lateral spacing on cells involved in bone regeneration. In this context, in the present study the MC3T3-E1 murine pre-osteoblast cells behavior has been investigated by using TiO2 nanotubes of ~78 nm diameter and lateral spacing of 18 nm and 80 nm, respectively. Both nanostructured surfaces supported cell viability and proliferation in approximately equal extent. However, obvious differences in the cell spreading areas, morphologies, the organization of the actin cytoskeleton and the pattern of the focal adhesions were noticed. Furthermore, investigation of the pre-osteoblast differentiation potential indicated a higher capacity of larger spacing nanostructure to enhance the expression of the alkaline phosphatase, osteopontin and osteocalcin osteoblast specific markers inducing osteogenic differentiation. These findings provide the proof that lateral spacing of the TiO2 nanotube coated titanium (Ti) surfaces has to be considered in designing bone implants with improved biological performance.

6.
Sci Rep ; 9(1): 13439, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530838

RESUMO

Hollow titanium dioxide (TiO2) nanotubes offer substantially higher drug loading capacity and slower drug release kinetics compared to solid drug nanocarriers of comparable size. In this report, we load TiO2 nanotubes with iron oxide nanoparticles to facilitate site-specific magnetic guidance and drug delivery. We generate magnetic TiO2 nanotubes (TiO2NTs) by incorporating a ferrofluid containing Ø ≈ 10 nm iron oxide nanoparticles in planar sheets of weakly connected TiO2 nanotubes. After thermal annealing, the magnetic tubular arrays are loaded with therapeutic drugs and then sonicated to separate the nanotubes. We demonstrate that magnetic TiO2NTs are non-toxic for HeLa cells at therapeutic concentrations (≤200 µg/mL). Adhesion and endocytosis of magnetic nanotubes to a layer of HeLa cells are increased in the presence of a magnetic gradient field. As a proof-of-concept, we load the nanotubes with the topoisomerase inhibitor camptothecin and achieve a 90% killing efficiency. We also load the nanotubes with oligonucleotides for cell transfection and achieve 100% cellular uptake efficiency. Our results demonstrate the potential of magnetic TiO2NTs for a wide range of biomedical applications, including site-specific delivery of therapeutic drugs.

7.
Curr Med Chem ; 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31362646

RESUMO

TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excel¬lent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.

8.
ChemistryOpen ; 8(7): 813, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31304072

RESUMO

Invited for this month's cover picture is the group of Professor Patrik Schmuki. The cover picture shows the classic hydrothermal equipment needed to synthesise TiO2 nanostructures versus the simple room temperature, 'test tube' approach described in the article on the synthesis of titanium dioxide 'hedgehog' nanowires (SEM picture). Read the full text of their Communication at 10.1002/open.201900013.

9.
ChemistryOpen ; 8(7): 817-821, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31304074

RESUMO

Anatase nanowires were synthesized in solution by using a simple mixing of titanium diisopropoxide bis(acetylacetonate), lactic acid and sodium hydroxide at room temperature. We discuss effects of reaction parameters and post treatment (annealing) on the nanowire morphology, surface area, and crystallinity, as well as the competing morphology directing effects of lactic acid and sodium hydroxide. Then the room temperature nanowires were directly grown onto fluoride doped tin oxide (FTO) glass to form photoanodes. Photoelectrochemical measurements of the different nanowires were performed and compared to conventional nanowires produced by high temperature synthesis. Clearly the nanowires introduced in this work show a significant increase in the maximum photocurrent, compared to classic hydrothermal nanowire layers.

10.
Chem Asian J ; 14(15): 2724-2730, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188545

RESUMO

TiO2 nanotubes were successfully co-doped with sulfur and Ti3+ states using a facile annealing treatment in H2 /H2 S gas mixture. The obtained nanotubes were investigated for their photocatalytic performance and characterized by SEM, XRD, XPS, EPR, IPCE, IMPS and Mott-Schottky measurements. The synthesized co-doped TiO2 nanotubes show an enhanced photocatalytic hydrogen production rate compared to tubes that were treated only in pure H2 or H2 S atmosphere-this without the presence of any co-catalyst. It was found that sulfur in co-doped TiO2 exists in the form of S2- and a small quantity of S4+ /S6+ , which leads to a narrowing of the band gap. However, the enhanced absorption of light in the visible range is not the key reason for the improved photocatalytic performance. We ascribe the enhanced photocatalytic activity to a synergetic effect of S mid-gap states and disordered Ti3+ defects that facilitate photo generated electron transfer.

11.
ACS Appl Mater Interfaces ; 11(16): 14980-14985, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30916543

RESUMO

Titanium dioxide (TiO2) holds remarkable promises for developing current theranostic strategies. Anodic TiO2 nanostructures as a porous scaffold have offered a broad range of useful theranostic properties; however, previous attempts to generate single and uniform TiO2 one-dimensional nanocarriers from anodic nanotube arrays have resulted in a broad cluster size distribution of arbitrarily broken tubes that are unsuitable for therapeutic delivery systems due to poor biodistribution and the risk of introducing tissue inflammation. Here, we achieve well-separated, uniformly shaped anodic TiO2 nanotubes and nanocylinders through a time-varying electrochemical anodization protocol that leads to the generation of planar sheets of weakly connected nanotubes with a defined fracture point near the base. Subsequent sonication cleanly detaches the nanotubes from the base. Depending on the position of the fracture point, we can fabricate single-anodic nanocylinders that are open on both ends and nanotubes that are closed on one end. We proceed to show that anodic nanotubes and nanocylinders are nontoxic at therapeutic concentrations. When conjugated with the anticancer drug doxorubicin using a pH-responsive linker, they are readily internalized by cells and subsequently release their drug cargo into acidic intracellular compartments. Our results demonstrate that uniformly sized anodic TiO2 nanotubes and nanocylinders are suitable for subcellular delivery of therapeutic agents in cancer therapy.

12.
ChemSusChem ; 12(9): 1900-1905, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30893509

RESUMO

Illumination of anatase in an aqueous methanolic solution leads to the formation of Ti3+ sites that are catalytically active for the generation of dihydrogen (H2 ). With increasing illumination time, a light-induced self-amplification of the photocatalytic H2 production rate can be observed. The effect is characterized by electron paramagnetic resonance (EPR) spectroscopy, reflectivity, and photoelectrochemical techniques. Combined measurements of H2 generation rates and in situ EPR spectroscopic observation over the illumination time with AM 1.5G or UV light establish that the activation is accompanied by the formation of Ti3+ states, which is validated through their characteristic EPR resonance at g=1.93. This self-activation and amplification behavior can be observed for anatase nanoparticles and nanotubes.

13.
ACS Catal ; 9(1): 345-364, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30701123

RESUMO

Black TiO2 nanomaterials have recently emerged as promising candidates for solar-driven photocatalytic hydrogen production. Despite the great efforts to synthesize highly reduced TiO2, it is apparent that intermediate degree of reduction (namely, gray titania) brings about the formation of peculiar defective catalytic sites enabling cocatalyst-free hydrogen generation. A precise understanding of the structural and electronic nature of these catalytically active sites is still elusive, as well as the fundamental structure-activity relationships that govern formation of crystal defects, increased light absorption, charge separation, and photocatalytic activity. In this Review, we discuss the basic concepts that underlie an effective design of reduced TiO2 photocatalysts for hydrogen production such as (i) defects formation in reduced TiO2, (ii) analysis of structure deformation and presence of unpaired electrons through electron paramagnetic resonance spectroscopy, (iii) insights from surface science on electronic singularities due to defects, and (iv) the key differences between black and gray titania, that is, photocatalysts that require Pt-modification and cocatalyst-free photocatalytic hydrogen generation. Finally, future directions to improve the performance of reduced TiO2 photocatalysts are outlined.

14.
Photochem Photobiol Sci ; 18(5): 1046-1055, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30534751

RESUMO

Gold-decorated TiO2 nanotubes were used for the photocatalytic abatement of Hg(ii) in aqueous solutions. The presence of dewetted Au nanoparticles induces a strong enhancement of photocatalytic reduction and scavenging performances, with respect to naked TiO2. In the presence of chlorides, a massive formation of Hg2Cl2 nanowires, produced from Au nanoparticles, was observed using highly Au loaded photocatalysts to treat a 10 ppm Hg(ii) solution. EDS and XPS confirmed the nature of the photo-produced nanowires. In the absence of chlorides and/or at lower Hg(ii) starting concentrations, the scavenging of mercury proceeds through the formation of Hg-Au amalgams. Solar light driven Hg(ii) abatements up to 90% were observed after 24 h. ICP-MS analysis revealed that the removed Hg(ii) is accumulated on the photocatalyst surface. Regeneration of Hg-loaded exhaust photocatalysts was easily performed by anodic stripping of Hg(0) and Hg(i) to Hg(ii). After four catalytic-regeneration cycles, only a 10% decrease of activity was observed.

15.
Chem Commun (Camb) ; 55(4): 533-536, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30556068

RESUMO

Here we investigate the band-level energetics of "black" hydrogenated titania in different polymorphs using in situ photoelectrochemical measurements and XPS valence band measurements. We find that the conduction band of black rutile is higher in energy than in black anatase by 0.4 eV. For photocatalytic hydrogen generation, in a polymorph hetero-junction such as in black Degussa P25, thus black rutile can act as a photosensitizer while black anatase provides charge-mediation catalysis onto H2O to generate H2. By optimizing the thermal reduction conditions of black anatase/rutile junctions the H2 production can be significantly increased.

16.
ChemistryOpen ; 7(10): 797-802, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30302303

RESUMO

In the present work, we report the use of TiO2 nanotube (NT) layers with a regular intertube spacing that are decorated by Pt nanoparticles through the atomic layer deposition (ALD) of Pt. These Pt-decorated spaced (SP) TiO2 NTs are subsequently explored for photocatalytic H2 evolution and are compared to classical close-packed (CP) TiO2 NTs that are also decorated with various amounts of Pt by using ALD. On both tube types, by varying the number of ALD cycles, Pt nanoparticles of different sizes and areal densities are formed, uniformly decorating the inner and outer walls from tube top to tube bottom. The photocatalytic activity for H2 evolution strongly depends on the size and density of Pt nanoparticles, driven by the number of ALD cycles. We show that, for SP NTs, a much higher photocatalytic performance can be achieved with significantly smaller Pt nanoparticles (i.e. for fewer ALD cycles) compared to CP NTs.

17.
ACS Appl Mater Interfaces ; 10(35): 29532-29542, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30088904

RESUMO

Noble metal cocatalysts are conventionally a crucial factor in oxide-semiconductor-based photocatalytic hydrogen generation. In the present work, we show that optimized high-temperature hydrogenation of commercially available strontium titanate (SrTiO3) powder can be used to engineer an intrinsic cocatalytic shell around nanoparticles that can create a photocatalyst that is highly effective without the use of any additional cocatalyst for hydrogen generation from neutral aqueous methanol solutions. This intrinsic activation effect can also be observed for SrTiO3[100] single crystal as well as Nb-doped SrTiO3[100] single crystal. For all types of SrTiO3 samples (nanopowders and either of the single crystals), hydrogenation under optimum conditions leads to a surface-hydroxylated layer together with lattice defects visible by transmission electron microscopy, electron paramagnetic resonance (EPR), and photoluminescence (PL). Active samples provide specific defects identified by EPR, PL, and electron-energy loss spectroscopy as Ti3+ states in a defective matrix-this is in contrast to the inactive defects formed in other reductive atmospheres. In aqueous media, active SrTiO3 samples show a significant negative shift of the flatband potential (in photoelectrochemical as well as in capacitance data) and a lower charge-transfer resistance for photoexcited electrons. We therefore ascribe the remarkable cocatalyst-free activation of the material to a synergy between thermodynamics (altered interface energetics induced by hydroxylation) and kinetics (charge transfer mediation by suitable Ti3+ states).

18.
Bioact Mater ; 3(1): 55-63, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29744442

RESUMO

The use of bioactive glass (BG) particles as a filler for the development of composite electrospun fibers has already been widely reported and investigated. The novelty of the present research work is represented by the use of benign solvents (like acetic acid and formic acid) for electrospinning of composite fibers containing BG particles, by using a blend of PCL and chitosan. In this work, different BG particle sizes were investigated, namely nanosized and micron-sized. A preliminary investigation about the possible alteration of BG particles in the electrospinning solvents was performed using SEM analysis. The obtained composite fibers were investigated in terms of morphological, chemical and mechanical properties. An in vitro mineralization assay in simulated body fluid (SBF) was performed to investigate the capability of the composite electrospun fibers to induce the formation of hydroxycarbonate apatite (HCA).

19.
ACS Appl Mater Interfaces ; 10(21): 18220-18226, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29741090

RESUMO

Au and Pt do not form homogeneous bulk alloys as they are thermodynamically not miscible. However, we show that anodic TiO2 nanotubes (NTs) can in situ be uniformly decorated with homogeneous AuPt alloy nanoparticles (NPs) during their anodic growth. For this, a metallic Ti substrate containing low amounts of dissolved Au (0.1 atom %) and Pt (0.1 atom %) is used for anodizing. The matrix metal (Ti) is converted to oxide, whereas at the oxide/metal interface direct noble metal particle formation and alloying of Au and Pt takes place; continuously these particles are then picked up by the growing nanotube wall. In our experiments, the AuPt alloy NPs have an average size of 4.2 nm, and at the end of the anodic process, these are regularly dispersed over the TiO2 nanotubes. These alloyed AuPt particles act as excellent co-catalyst in photocatalytic H2 generation, with a H2 production rate of 12.04 µL h-1 under solar light. This represents a strongly enhanced activity as compared to TiO2 NTs decorated with monometallic particles of Au (7 µL h-1) or Pt (9.96 µL h-1).

20.
ChemSusChem ; 11(11): 1873-1879, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29644796

RESUMO

Over the past years, α-Fe2 O3 (hematite) has re-emerged as a promising photoanode material in photoelectrochemical (PEC) water splitting. In spite of considerable success in obtaining relatively high solar conversion efficiency, the main drawbacks hindering practical application of hematite are its intrinsically hampered charge transport and sluggish oxygen evolution reaction (OER) kinetics on the photoelectrode surface. In the present work, we report a strategy that synergistically addresses both of these critical limitations. Our approach is based on three key features that are applied simultaneously: i) a careful nanostructuring of the hematite photoanode in the form of nanorods, ii) doping of hematite by Sn4+ ions using a controlled gradient, and iii) surface decoration of hematite by a new class of layered double hydroxide (LDH) OER co-catalysts based on Zn-Co LDH. All three interconnected forms of functionalization result in an extraordinary cathodic shift of the photocurrent onset potential by more than 300 mV and a PEC performance that reaches a photocurrent density of 2.00 mA cm-2 at 1.50 V vs. the reversible hydrogen electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA