Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(7)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33579822

RESUMO

Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacement of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage.

2.
Nature ; 588(7837): 284-289, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33239781

RESUMO

Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.

3.
Nat Biotechnol ; 38(10): 1203-1210, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33020633

RESUMO

Wild and weedy relatives of domesticated crops harbor genetic variants that can advance agricultural biotechnology. Here we provide a genome resource for the wild plant green millet (Setaria viridis), a model species for studies of C4 grasses, and use the resource to probe domestication genes in the close crop relative foxtail millet (Setaria italica). We produced a platinum-quality genome assembly of S. viridis and de novo assemblies for 598 wild accessions and exploited these assemblies to identify loci underlying three traits: response to climate, a 'loss of shattering' trait that permits mechanical harvest and leaf angle, a predictor of yield in many grass crops. With CRISPR-Cas9 genome editing, we validated Less Shattering1 (SvLes1) as a gene whose product controls seed shattering. In S. italica, this gene was rendered nonfunctional by a retrotransposon insertion in the domesticated loss-of-shattering allele SiLes1-TE (transposable element). This resource will enhance the utility of S. viridis for dissection of complex traits and biotechnological improvement of panicoid crops.

4.
Nat Commun ; 11(1): 5442, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116128

RESUMO

Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses.


Assuntos
Poaceae/genética , Biomassa , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis , Diploide , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Genômica , Modelos Genéticos , Filogenia , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Poliploidia , Saccharum/genética , Estações do Ano , Sorghum/genética
5.
Genome Biol ; 21(1): 259, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023654

RESUMO

BACKGROUND: Plants can transmit somatic mutations and epimutations to offspring, which in turn can affect fitness. Knowledge of the rate at which these variations arise is necessary to understand how plant development contributes to local adaption in an ecoevolutionary context, particularly in long-lived perennials. RESULTS: Here, we generate a new high-quality reference genome from the oldest branch of a wild Populus trichocarpa tree with two dominant stems which have been evolving independently for 330 years. By sampling multiple, age-estimated branches of this tree, we use a multi-omics approach to quantify age-related somatic changes at the genetic, epigenetic, and transcriptional level. We show that the per-year somatic mutation and epimutation rates are lower than in annuals and that transcriptional variation is mainly independent of age divergence and cytosine methylation. Furthermore, a detailed analysis of the somatic epimutation spectrum indicates that transgenerationally heritable epimutations originate mainly from DNA methylation maintenance errors during mitotic rather than during meiotic cell divisions. CONCLUSION: Taken together, our study provides unprecedented insights into the origin of nucleotide and functional variation in a long-lived perennial plant.

6.
Theor Appl Genet ; 133(11): 3119-3137, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32803378

RESUMO

KEY MESSAGE: Quantitation of leaf surface wax on a population of switchgrass identified three significant QTL present across six environments that contribute to leaf glaucousness and wax composition and that show complex genetic × environmental (G × E) interactions. The C4 perennial grass Panicum virgatum (switchgrass) is a native species of the North American tallgrass prairie. This adaptable plant can be grown on marginal lands and is useful for soil and water conservation, biomass production, and as a forage. Two major switchgrass ecotypes, lowland and upland, differ in a range of desirable traits, and the responsible underlying loci can be localized efficiently in a pseudotestcross design. An outbred four-way cross (4WCR) mapping population of 750 F2 lines was used to examine the genetic basis of differences in leaf surface wax load between two lowland (AP13 and WBC) and two upland (DAC and VS16) tetraploid cultivars. The objective of our experiments was to identify wax compositional variation among the population founders and to map underlying loci responsible for surface wax variation across environments. GCMS analyses of surface wax extracted from 4WCR F0 founders and F1 hybrids reveal higher levels of wax in lowland genotypes and show quantitative differences of ß-diketones, primary alcohols, and other wax constituents. The full mapping population was sampled over two seasons from four field sites with latitudes ranging from 30 to 42 °N, and leaf surface wax was measured. We identified three high-confidence QTL, of which two displayed significant G × E effects. Over 50 candidate genes underlying the QTL regions showed similarity to genes in either Arabidopsis or barley known to function in wax synthesis, modification, regulation, and transport.

7.
Plant Biotechnol J ; 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32794321

RESUMO

Here, we describe a worldwide haplotype map for soybean (GmHapMap) constructed using whole-genome sequence data for 1007 Glycine max accessions and yielding 14.9 million variants as well as 4.3 M tag single-nucleotide polymorphisms (SNPs). When sampling random subsets of these accessions, the number of variants and tag SNPs plateaued beyond approximately 800 and 600 accessions, respectively. This suggests extensive coverage of diversity within the cultivated soybean. GmHapMap variants were imputed onto 21 618 previously genotyped accessions with up to 96% success for common alleles. A local association analysis was performed with the imputed data using markers located in a 1-Mb region known to contribute to seed oil content and enabled us to identify a candidate causal SNP residing in the NPC1 gene. We determined gene-centric haplotypes (407 867 GCHs) for the 55 589 genes and showed that such haplotypes can help to identify alleles that differ in the resulting phenotype. Finally, we predicted 18 031 putative loss-of-function (LOF) mutations in 10 662 genes and illustrated how such a resource can be used to explore gene function. The GmHapMap provides a unique worldwide resource for applied soybean genomics and breeding.

8.
Nat Commun ; 11(1): 3670, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728126

RESUMO

Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.


Assuntos
Brachypodium/genética , Diploide , Evolução Molecular , Genoma de Planta , Poliploidia , Cromossomos de Plantas/genética , Genoma de Cloroplastos , Genômica , Hibridização Genética , Filogenia , Polimorfismo de Nucleotídeo Único , Retroelementos/genética , Especificidade da Espécie
9.
Methods Mol Biol ; 2096: 197-215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32720156

RESUMO

We demonstrate a selection of network and machine learning techniques useful in the analysis of complex datasets, including 2-way similarity networks, Markov clustering, enrichment statistical networks, FCROS differential analysis, and random forests. We demonstrate each of these techniques on the Populus trichocarpa gene expression atlas.

10.
Mol Phylogenet Evol ; 151: 106904, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645485

RESUMO

The flavonoids, one of the largest classes of plant secondary metabolites, are found in lineages that span the land plant phylogeny and play important roles in stress responses and as pigments. Perhaps the most well-studied flavonoids are the anthocyanins that have human health benefits and help plants attract pollinators, regulate hormone production, and confer resistance to abiotic and biotic stresses. The canonical biochemical pathway responsible for the production of these pigments is well-characterized for flowering plants yet its conservation across deep divergences in land plants remains debated and poorly understood. Many early land plants such as mosses, liverworts, and ferns produce flavonoid pigments, but their biosynthetic origins and homologies to the anthocyanin pathway remain uncertain. We conducted phylogenetic analyses using full genome sequences representing nearly all major green plant lineages to reconstruct the evolutionary history of the anthocyanin biosynthetic pathway then test the hypothesis that genes in this pathway are present in early land plants. We found that the entire pathway was not intact until the most recent common ancestor of seed plants and that orthologs of many downstream enzymes are absent from seedless plants including mosses, liverworts, and ferns. Our results also highlight the utility of phylogenetic inference, as compared to pairwise sequence similarity, in orthology assessment within large gene families that have complex duplication-loss histories. We suggest that the production of red-violet flavonoid pigments widespread in seedless plants, including the 3-deoxyanthocyanins, requires the activity of novel, as-yet discovered enzymes, and represents convergent evolution of red-violet coloration across land plants.

11.
New Phytol ; 228(5): 1627-1639, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32706429

RESUMO

The apparent antagonism between salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signalling resulting in trade-offs between defence against (hemi)biotrophic and necrotrophic pathogens has been widely described across multiple plant species. However, the underlying mechanism remains to be fully established. The molecular and cellular functions of ANGUSTIFOLIA (AN) were characterised, and its role in regulating the pathogenic response was studied in Arabidopsis. We demonstrated that AN, a plant homologue of mammalian C-TERMINAL BINDING PROTEIN (CtBP), antagonistically regulates plant resistance to the hemibiotrophic pathogen Pseudomonas syringae and the necrotrophic pathogen Botrytis cinerea. Consistent with phenotypic observations, transcription of genes involved in SA and JA/ET pathways was antagonistically regulated by AN. By interacting with another nuclear protein TYROSYL-DNA PHOSPHODIESTERASE1 (TDP1), AN imposes transcriptional repression on MYB46, encoding a transcriptional activator of PHENYLALANINE AMMONIA-LYASE (PAL) genes which are required for SA biosynthesis, while releasing TDP1-imposed transcriptional repression on WRKY33, a master regulator of the JA/ET signalling pathway. These findings demonstrate that transcriptional co-regulation of MYB46 and WRKY33 by AN mediates the coordination of SA and JA/ET pathways to optimise defences against (hemi)biotrophic and necrotrophic pathogens.

12.
Genome Biol ; 21(1): 177, 2020 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-32684159

RESUMO

BACKGROUND: Heteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to degeneration of the Y chromosome. The progression of degeneration is not well understood, as complete sequence assemblies of heteromorphic Y chromosomes have only been generated across a handful of taxa with highly degenerate sex chromosomes. Here, we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at an intermediate stage of degeneration. Our previous work identified that the non-recombining region between the X and the Y spans approximately 17.5 Mb on the X chromosome. RESULTS: We combine long-read sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome BAC clones. We find three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The threespine stickleback Y shows convergence with more degenerate sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we find no evidence for large amplicons identified in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). CONCLUSIONS: Together, our work shows that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.

13.
Genes (Basel) ; 11(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722098

RESUMO

The ages and sizes of a sex-determination region (SDR) are difficult to determine in non-model species. Due to the lack of recombination and enrichment of repetitive elements in SDRs, the quality of assembly with short sequencing reads is universally low. Unique features present in the SDRs help provide clues about how SDRs are established and how they evolve in the absence of recombination. Several Populus species have been reported with a male heterogametic configuration of sex (XX/XY system) mapped on chromosome 19, but the exact location of the SDR has been inconsistent among species, and thus far, none of these SDRs has been fully assembled in a genomic context. Here we identify the Y-SDR from a Y-linked contig directly from a long-read PacBio assembly of a Populus trichocarpa male individual. We also identified homologous gene sequences in the SDR of P. trichocarpa and the SDR of the W chromosome in Salix purpurea. We show that inverted repeats (IRs) found in the Y-SDR and the W-SDR are lineage-specific. We hypothesize that, although the two IRs are derived from the same orthologous gene within each species, they likely have independent evolutionary histories. Furthermore, the truncated inverted repeats in P. trichocarpa may code for small RNAs that target the homologous gene for RNA-directed DNA methylation. These findings support the hypothesis that diverse sex-determining systems may be achieved through similar evolutionary pathways, thereby providing a possible mechanism to explain the lability of sex-determination systems in plants in general.

14.
Nat Ecol Evol ; 4(6): 820-830, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32313176

RESUMO

Although it is widely believed that early vertebrate evolution was shaped by ancient whole-genome duplications, the number, timing and mechanism of these events remain elusive. Here, we infer the history of vertebrates through genomic comparisons with a new chromosome-scale sequence of the invertebrate chordate amphioxus. We show how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication. We resolve two distinct ancient duplications based on patterns of chromosomal conserved synteny. All extant vertebrates share the first duplication, which occurred in the mid/late Cambrian by autotetraploidization (that is, direct genome doubling). In contrast, the second duplication is found only in jawed vertebrates and occurred in the mid-late Ordovician by allotetraploidization (that is, genome duplication following interspecific hybridization) from two now-extinct progenitors. This complex genomic history parallels the diversification of vertebrate lineages in the fossil record.


Assuntos
Evolução Molecular , Duplicação Gênica , Animais , Genoma , Sintenia , Vertebrados/genética
15.
Nat Genet ; 52(5): 525-533, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313247

RESUMO

Polyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages. These differential evolutionary trajectories are accompanied by gene-family diversification and homoeolog expression divergence among polyploid lineages. Selection and domestication drive parallel gene expression similarities in fibers of two cultivated cottons, involving coexpression networks and N6-methyladenosine RNA modifications. Furthermore, polyploidy induces recombination suppression, which correlates with altered epigenetic landscapes and can be overcome by wild introgression. These genomic insights will empower efforts to manipulate genetic recombination and modify epigenetic landscapes and target genes for crop improvement.


Assuntos
Genoma de Planta/genética , Gossypium/genética , Fibra de Algodão , Domesticação , Epigenômica/métodos , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Genômica/métodos , Filogenia , Poliploidia
16.
Nat Commun ; 11(1): 1178, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132530

RESUMO

Targeted insertion of transgenes at pre-determined plant genomic safe harbors provides a desirable alternative to insertions at random sites achieved through conventional methods. Most existing cases of targeted gene insertion in plants have either relied on the presence of a selectable marker gene in the insertion cassette or occurred at low frequency with relatively small DNA fragments (<1.8 kb). Here, we report the use of an optimized CRISPR-Cas9-based method to achieve the targeted insertion of a 5.2 kb carotenoid biosynthesis cassette at two genomic safe harbors in rice. We obtain marker-free rice plants with high carotenoid content in the seeds and no detectable penalty in morphology or yield. Whole-genome sequencing reveals the absence of off-target mutations by Cas9 in the engineered plants. These results demonstrate targeted gene insertion of marker-free DNA in rice using CRISPR-Cas9 genome editing, and offer a promising strategy for genetic improvement of rice and other crops.


Assuntos
Carotenoides/metabolismo , Edição de Genes/métodos , Técnicas de Introdução de Genes/métodos , Oryza/genética , Melhoramento Vegetal/métodos , Vias Biossintéticas/genética , Sistemas CRISPR-Cas/genética , Carotenoides/análise , DNA de Plantas/genética , Genoma de Planta/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas , Sementes/química , Sequenciamento Completo do Genoma
17.
Phytopathology ; 110(6): 1180-1188, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32207662

RESUMO

Cryphonectria parasitica is the causal agent of chestnut blight, a fungal disease that almost entirely eliminated mature American chestnut from North America over a 50-year period. Here, we formally report the genome of C. parasitica EP155 using a Sanger shotgun sequencing approach. After finishing and integration with simple-sequence repeat markers, the assembly was 43.8 Mb in 26 scaffolds (L50 = 5; N50 = 4.0Mb). Eight chromosomes are predicted: five scaffolds have two telomeres and six scaffolds have one telomere sequence. In total, 11,609 gene models were predicted, of which 85% show similarities to other proteins. This genome resource has already increased the utility of a fundamental plant pathogen experimental system through new understanding of the fungal vegetative incompatibility system, with significant implications for enhancing mycovirus-based biological control.


Assuntos
Ascomicetos , Fagaceae , Micovírus , América do Norte , Doenças das Plantas
18.
Genetics ; 215(1): 267-284, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32205398

RESUMO

Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20-50 entries each year at 10-20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement.

19.
Gigascience ; 9(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32135007

RESUMO

BACKGROUND: Crassulacean acid metabolism (CAM), a specialized mode of photosynthesis, enables plant adaptation to water-limited environments and improves photosynthetic efficiency via an inorganic carbon-concentrating mechanism. Kalanchoë fedtschenkoi is an obligate CAM model featuring a relatively small genome and easy stable transformation. However, the molecular responses to light quality and intensity in CAM plants remain understudied. RESULTS: Here we present a genome-wide expression atlas of K. fedtschenkoi plants grown under 12 h/12 h photoperiod with different light quality (blue, red, far-red, white light) and intensity (0, 150, 440, and 1,000 µmol m-2 s-1) based on RNA sequencing performed for mature leaf samples collected at dawn (2 h before the light period) and dusk (2 h before the dark period). An eFP web browser was created for easy access of the gene expression data. Based on the expression atlas, we constructed a light-responsive co-expression network to reveal the potential regulatory relationships in K. fedtschenkoi. Measurements of leaf titratable acidity, soluble sugar, and starch turnover provided metabolic indicators of the magnitude of CAM under the different light treatments and were used to provide biological context for the expression dataset. Furthermore, CAM-related subnetworks were highlighted to showcase genes relevant to CAM pathway, circadian clock, and stomatal movement. In comparison with white light, monochrome blue/red/far-red light treatments repressed the expression of several CAM-related genes at dusk, along with a major reduction in acid accumulation. Increasing light intensity from an intermediate level (440 µmol m-2 s-1) of white light to a high light treatment (1,000 µmol m-2 s-1) increased expression of several genes involved in dark CO2 fixation and malate transport at dawn, along with an increase in organic acid accumulation. CONCLUSIONS: This study provides a useful genomics resource for investigating the molecular mechanism underlying the light regulation of physiology and metabolism in CAM plants. Our results support the hypothesis that both light intensity and light quality can modulate the CAM pathway through regulation of CAM-related genes in K. fedtschenkoi.

20.
Genome Biol ; 21(1): 38, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059685

RESUMO

BACKGROUND: Sex chromosomes have arisen independently in a wide variety of species, yet they share common characteristics, including the presence of suppressed recombination surrounding sex determination loci. Mammalian sex chromosomes contain multiple palindromic repeats across the non-recombining region that show sequence conservation through gene conversion and contain genes that are crucial for sexual reproduction. In plants, it is not clear if palindromic repeats play a role in maintaining sequence conservation in the absence of homologous recombination. RESULTS: Here we present the first evidence of large palindromic structures in a plant sex chromosome, based on a highly contiguous assembly of the W chromosome of the dioecious shrub Salix purpurea. The W chromosome has an expanded number of genes due to transpositions from autosomes. It also contains two consecutive palindromes that span a region of 200 kb, with conspicuous 20-kb stretches of highly conserved sequences among the four arms that show evidence of gene conversion. Four genes in the palindrome are homologous to genes in the sex determination regions of the closely related genus Populus, which is located on a different chromosome. These genes show distinct, floral-biased expression patterns compared to paralogous copies on autosomes. CONCLUSION: The presence of palindromes in sex chromosomes of mammals and plants highlights the intrinsic importance of these features in adaptive evolution in the absence of recombination. Convergent evolution is driving both the independent establishment of sex chromosomes as well as their fine-scale sequence structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA