Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Nanotechnology ; 31(23): 235605, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32125281


Intercalation of drug molecules into synthetic DNA nanostructures formed through self-assembled origami has been postulated as a valuable future method for targeted drug delivery. This is due to the excellent biocompatibility of synthetic DNA nanostructures, and high potential for flexible programmability including facile drug release into or near to target cells. Such favourable properties may enable high initial loading and efficient release for a predictable number of drug molecules per nanostructure carrier, important for efficient delivery of safe and effective drug doses to minimise non-specific release away from target cells. However, basic questions remain as to how intercalation-mediated loading depends on the DNA carrier structure. Here we use the interaction of dyes YOYO-1 and acridine orange with a tightly-packed 2D DNA origami tile as a simple model system to investigate intercalation-mediated loading. We employed multiple biophysical techniques including single-molecule fluorescence microscopy, atomic force microscopy, gel electrophoresis and controllable damage using low temperature plasma on synthetic DNA origami samples. Our results indicate that not all potential DNA binding sites are accessible for dye intercalation, which has implications for future DNA nanostructures designed for targeted drug delivery.

Phys Chem Chem Phys ; 20(37): 24263-24286, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30211409


Atmospheric pressure plasmas are sources of biologically active oxygen and nitrogen species, which makes them potentially suitable for the use as biomedical devices. Here, experiments and simulations are combined to investigate the formation of the key reactive oxygen species, atomic oxygen (O) and hydroxyl radicals (OH), in a radio-frequency driven atmospheric pressure plasma jet operated in humidified helium. Vacuum ultra-violet high-resolution Fourier-transform absorption spectroscopy and ultra-violet broad-band absorption spectroscopy are used to measure absolute densities of O and OH. These densities increase with increasing H2O content in the feed gas, and approach saturation values at higher admixtures on the order of 3 × 1014 cm-3 for OH and 3 × 1013 cm-3 for O. Experimental results are used to benchmark densities obtained from zero-dimensional plasma chemical kinetics simulations, which reveal the dominant formation pathways. At low humidity content, O is formed from OH+ by proton transfer to H2O, which also initiates the formation of large cluster ions. At higher humidity content, O is created by reactions between OH radicals, and lost by recombination with OH. OH is produced mainly from H2O+ by proton transfer to H2O and by electron impact dissociation of H2O. It is lost by reactions with other OH molecules to form either H2O + O or H2O2. Formation pathways change as a function of humidity content and position in the plasma channel. The understanding of the chemical kinetics of O and OH gained in this work will help in the development of plasma tailoring strategies to optimise their densities in applications.

Appl Microbiol Biotechnol ; 99(1): 293-300, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25007743


In order to assess the capillary segmented flow reactor as a potentially appropriate reactor device for the enzymatic hydrolysis of vegetable oils, a study was made to reveal the impact of incident mass transfer processes on the hydrolysis rate. As demonstrated by means of experiments performed in a modified Lewis-cell type contactor, which allows the independent adjustment of flow rates for both phases, the enzymatic hydrolysis rate of rapeseed oil is strongly governed by mass transport processes taking place in both phases. In the oil phase, any increase in convective mass transfer results in an enhancement of hydrolysis rate due to facilitated removal of fatty acids from interface layer which is known to inhibit the activity of the enzyme adsorbed at the interface. At asynchronous condition when solely the water phase is agitated, however, convective mass transport in the interface layer has an inverse effect on the hydrolysis rate due to the generation of considerable shear stress in the vicinity of the interface unfavorable for the performance of the enzymes. By operating at synchronous agitation conditions, the shear stress can considerably be reduced. Generally, the positive effect of mass transport in the oil phase compensates the negative one in the aqueous phase thus resulting in an overall increase in hydrolysis rate of 57% with increasing stirrer rates. The results can be applied to the operation of segmented-flow capillary reactors by choosing the oil phase as disperse phase and the water phase as continuous phase, respectively.

Reatores Biológicos , Lipase/metabolismo , Óleos Vegetais/metabolismo , Ácidos Graxos Monoinsaturados , Hidrólise , Cinética , Óleo de Brassica napus