Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Comput Graph Appl ; 42(2): 68-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35230948

RESUMO

Electrical engines are a key technology all automotive manufacturers must master to stay competitive. Engineers need to analyze an overwhelming number of engine measurements to improve the manufacturing for this technology. They are hindered in the task of analyzing large numbers of engines, however, by the following challenges: 1) Engines comprise a complex hierarchical structure of subcomponents. 2) Locating the cause of errors along manufacturing processes is a difficult procedure. 3) Large numbers of heterogeneous measurements impair the ability to explain errors in engines. We address these challenges in a design study with automotive engineers and by developing the visual analytics system Manufacturing Explorer (ManEx), which provides interactive interfaces to analyze measurements of engines across the manufacturing process. ManEx was validated by five experts. Our results suggest high usability and usefulness scores and the improvement of a real-world manufacturing process. Specifically, with ManEx, experts reduced scraped parts by over 3%.

2.
IEEE Trans Vis Comput Graph ; 28(6): 2486-2499, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33822726

RESUMO

Many spatiotemporal events can be viewed as contagions. These events implicitly propagate across space and time by following cascading patterns, expanding their influence, and generating event cascades that involve multiple locations. Analyzing such cascading processes presents valuable implications in various urban applications, such as traffic planning and pollution diagnostics. Motivated by the limited capability of the existing approaches in mining and interpreting cascading patterns, we propose a visual analytics system called VisCas. VisCas combines an inference model with interactive visualizations and empowers analysts to infer and interpret the latent cascading patterns in the spatiotemporal context. To develop VisCas, we address three major challenges 1) generalized pattern inference; 2) implicit influence visualization; and 3) multifaceted cascade analysis. For the first challenge, we adapt the state-of-the-art cascading network inference technique to general urban scenarios, where cascading patterns can be reliably inferred from large-scale spatiotemporal data. For the second and third challenges, we assemble a set of effective visualizations to support location navigation, influence inspection, and cascading exploration, and facilitate the in-depth cascade analysis. We design a novel influence view based on a three-fold optimization strategy for analyzing the implicit influences of the inferred patterns. We demonstrate the capability and effectiveness of VisCas with two case studies conducted on real-world traffic congestion and air pollution datasets with domain experts.

3.
IEEE Trans Vis Comput Graph ; 28(1): 11-21, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34587040

RESUMO

In this design study, we present IRVINE, a Visual Analytics (VA) system, which facilitates the analysis of acoustic data to detect and understand previously unknown errors in the manufacturing of electrical engines. In serial manufacturing processes, signatures from acoustic data provide valuable information on how the relationship between multiple produced engines serves to detect and understand previously unknown errors. To analyze such signatures, IRVINE leverages interactive clustering and data labeling techniques, allowing users to analyze clusters of engines with similar signatures, drill down to groups of engines, and select an engine of interest. Furthermore, IRVINE allows to assign labels to engines and clusters and annotate the cause of an error in the acoustic raw measurement of an engine. Since labels and annotations represent valuable knowledge, they are conserved in a knowledge database to be available for other stakeholders. We contribute a design study, where we developed IRVINE in four main iterations with engineers from a company in the automotive sector. To validate IRVINE, we conducted a field study with six domain experts. Our results suggest a high usability and usefulness of IRVINE as part of the improvement of a real-world manufacturing process. Specifically, with IRVINE domain experts were able to label and annotate produced electrical engines more than 30% faster.

4.
IEEE Comput Graph Appl ; 41(6): 7-12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890313

RESUMO

The increasing use of artificial intelligence (AI) technologies across application domains has prompted our society to pay closer attention to AI's trustworthiness, fairness, interpretability, and accountability. In order to foster trust in AI, it is important to consider the potential of interactive visualization, and how such visualizations help build trust in AI systems. This manifesto discusses the relevance of interactive visualizations and makes the following four claims: i) trust is not a technical problem, ii) trust is dynamic, iii) visualization cannot address all aspects of trust, and iv) visualization is crucial for human agency in AI.


Assuntos
Inteligência Artificial , Confiança , Humanos , Responsabilidade Social
5.
Artigo em Inglês | MEDLINE | ID: mdl-34898435

RESUMO

Coaches and analysts prepare for upcoming matches by identifying common patterns in the positioning and movement of the competing teams in specific situations. Existing approaches in this domain typically rely on manual video analysis and formation discussion using whiteboards; or expert systems that rely on state-of-the-art video and trajectory visualization techniques and advanced user interaction. We bridge the gap between these approaches by contributing a light-weight, simplified interaction and visualization system, which we conceptualized in an iterative design study with the coaching team of a European first league soccer team. Our approach is walk-up usable by all domain stakeholders, and at the same time, can leverage advanced data retrieval and analysis techniques: a virtual magnetic tactic-board. Users place and move digital magnets on a virtual tactic-board, and these interactions get translated to spatio-temporal queries, used to retrieve relevant situations from massive team movement data. Despite such seemingly imprecise query input, our approach is highly usable, supports quick user exploration, and retrieval of relevant results via query relaxation. Appropriate simplified result visualization supports in-depth analyses to explore team behavior, such as formation detection, movement analysis, and what-if analysis. We evaluated our approach with several experts from European first league soccer clubs. The results show that our approach makes the complex analytical processes needed for the identification of tactical behavior directly accessible to domain experts for the first time, demonstrating our support of coaches in preparation for future encounters.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34478370

RESUMO

Multiscale visualizations are typically used to analyze multiscale processes and data in various application domains, such as the visual exploration of hierarchical genome structures in molecular biology. However, creating such multiscale visualizations remains challenging due to the plethora of existing work and the expression ambiguity in visualization research. Up to today, there has been little work to compare and categorize multiscale visualizations to understand their design practices. In this work, we present a structured literature analysis to provide an overview of common design practices in multiscale visualization research. We systematically reviewed and categorized 122 published journal or conference papers between 1995 and 2020. We organized the reviewed papers in a taxonomy that reveals common design factors. Researchers and practitioners can use our taxonomy to explore existing work to create new multiscale navigation and visualization techniques. Based on the reviewed papers, we examine research trends and highlight open research challenges.

7.
IEEE Comput Graph Appl ; 41(5): 79-89, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34310292

RESUMO

Cluster analysis is an important technique in data analysis. However, there is no encompassing theory on scatterplots to evaluate clustering. Human visual perception is regarded as a gold standard to evaluate clustering. The cluster analysis based on human visual perception requires the participation of many probands, to obtain diverse data, and hence is a challenge to do. We contribute an empirical and data-driven study on human perception for visual clustering of large scatterplot data. First, we systematically construct and label a large, publicly available scatterplot dataset. Second, we carry out a qualitative analysis based on the dataset and summarize the influence of visual factors on clustering perception. Third, we use the labeled datasets to train a deep neural network for modeling human visual clustering perception. Our experiments show that the data-driven model successfully models the human visual perception, and outperforms conventional clustering algorithms in synthetic and real datasets.

8.
IEEE Trans Vis Comput Graph ; 27(2): 517-527, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048714

RESUMO

The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.

10.
Comput Graph Forum ; 39(6): 269-288, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33041406

RESUMO

Guidance is an emerging topic in the field of visual analytics. Guidance can support users in pursuing their analytical goals more efficiently and help in making the analysis successful. However, it is not clear how guidance approaches should be designed and what specific factors should be considered for effective support. In this paper, we approach this problem from the perspective of guidance designers. We present a framework comprising requirements and a set of specific phases designers should go through when designing guidance for visual analytics. We relate this process with a set of quality criteria we aim to support with our framework, that are necessary for obtaining a suitable and effective guidance solution. To demonstrate the practical usability of our methodology, we apply our framework to the design of guidance in three analysis scenarios and a design walk-through session. Moreover, we list the emerging challenges and report how the framework can be used to design guidance solutions that mitigate these issues.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31442977

RESUMO

Matrix representations are one of the main established and empirically proven to be effective visualization techniques for relational (or network) data. However, matrices-similar to node-link diagrams-are most effective if their layout reveals the underlying data topology. Given the many developed algorithms, a practical problem arises: "Which matrix reordering algorithm should I choose for my dataset at hand?" To make matters worse, different reordering algorithms applied to the same dataset may let significantly different visual matrix patterns emerge. This leads to the question of trustworthiness and explainability of these fully automated, often heuristic, black-box processes. We present GUIRO, a Visual Analytics system that helps novices, network analysts, and algorithm designers to open the black-box. Users can investigate the usefulness and expressiveness of 70 accessible matrix reordering algorithms. For network analysts, we introduce a novel model space representation and two interaction techniques for a user-guided reordering of rows or columns, and especially groups thereof (submatrix reordering). These novel techniques contribute to the understanding of the global and local dataset topology. We support algorithm designers by giving them access to 16 reordering quality metrics and visual exploration means for comparing reordering implementations on a row/column permutation level. We evaluated GUIRO in a guided explorative user study with 12 subjects, a case study demonstrating its usefulness in a real-world scenario, and through an expert study gathering feedback on our design decisions. We found that our proposed methods help even inexperienced users to understand matrix patterns and allow a user-guided steering of reordering algorithms. GUIRO helps to increase the transparency of matrix reordering algorithms, thus helping a broad range of users to get a better insight into the complex reordering process, in turn supporting data and reordering algorithm insights.

12.
J Sports Sci ; 37(24): 2774-2782, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31402759

RESUMO

To prepare their teams for upcoming matches, analysts in professional soccer watch and manually annotate up to three matches a day. When annotating matches, domain experts try to identify and improve suboptimal movements based on intuition and professional experience. The high amount of matches needing to be analysed manually result in a tedious and time-consuming process, and results may be subjective. We propose an automatic approach for the realisation of effective region-based what-if analyses in soccer. Our system covers the automatic detection of region-based faulty movement behaviour, as well as the automatic suggestion of possible improved alternative movements. As we show, our approach effectively supports analysts and coaches investigating matches by speeding up previously time-consuming work. We enable domain experts to include their domain knowledge in the analysis process by allowing to interactively adjust suggested improved movement, as well as its implications on region control. We demonstrate the usefulness of our proposed approach via an expert study with three invited domain experts, one being head coach from the first Austrian soccer league. As our results show that experts most often agree with the suggested player movement (83%), our proposed approach enhances the analytical capabilities in soccer and supports a more efficient analysis.


Assuntos
Movimento , Reconhecimento Automatizado de Padrão , Futebol , Análise e Desempenho de Tarefas , Humanos
13.
IEEE Comput Graph Appl ; 39(5): 60-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31199254

RESUMO

Analysts and coaches in soccer sports need to investigate large sets of past matches of opposing teams in a short time to prepare their teams for upcoming matches. Thus, they need appropriate methods and systems supporting them in searching for soccer moves for comparison and explanation. For the search of similar soccer moves, established distance and similarity measures typically only take spatiotemporal features like shape and speed of movement into account. However, movement in invasive team sports such as soccer includes much more than just a sequence of spatial locations. We propose an enhanced similarity measure integrating spatial, player, event as well as high level context such as pressure into the process of similarity search. We present a visual search system supporting analysts in interactively identifying similar contextual enhanced soccer moves in a dataset containing more than 60 soccer matches. Our approach is evaluated by several expert studies. The results of the evaluation reveal the large potential of enhanced similarity measures in the future.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31396383

RESUMO

Pattern extraction algorithms are enabling insights into the ever-growing amount of today's datasets by translating reoccurring data properties into compact representations. Yet, a practical problem arises: With increasing data volumes and complexity also the number of patterns increases, leaving the analyst with a vast result space. Current algorithmic and especially visualization approaches often fail to answer central overview questions essential for a comprehensive understanding of pattern distributions and support, their quality, and relevance to the analysis task. To address these challenges, we contribute a visual analytics pipeline targeted on the pattern-driven exploration of result spaces in a semi-automatic fashion. Specifically, we combine image feature analysis and unsupervised learning to partition the pattern space into interpretable, coherent chunks, which should be given priority in a subsequent in-depth analysis. In our analysis scenarios, no ground-truth is given. Thus, we employ and evaluate novel quality metrics derived from the distance distributions of our image feature vectors and the derived cluster model to guide the feature selection process. We visualize our results interactively, allowing the user to drill down from overview to detail into the pattern space and demonstrate our techniques in two case studies on Earth observation and biomedical genomic data.

16.
IEEE Trans Vis Comput Graph ; 24(1): 120-130, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866559

RESUMO

Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data. It supports exploration by offering the analyst a visual platform to analyze intermediate results, adapt the underlying computations, iteratively partition the data, and to reflect previous analytical activities. The history of previous decisions is explicitly visualized within a flow graph, allowing to compare earlier cluster refinements and to explore relations. We further leverage quality and interestingness measures to guide the analyst in the discovery of useful patterns, relations, and data partitions. We conducted two pair analytics experiments together with a subject matter expert in speech intonation research to demonstrate that the approach is effective for interactive data analysis, supporting enhanced understanding of clustering results as well as the interactive process itself.

17.
IEEE Trans Vis Comput Graph ; 24(1): 13-22, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866578

RESUMO

Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.

18.
IEEE Comput Graph Appl ; 37(3): 82-87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28459674

RESUMO

3D shape representations are essential when storing shape information for natural and manmade objects. To make use of shape information, many applications require shape-processing functionality, such as for search, annotation, classification, modeling, restoration, or collection exploration. This article discusses feature-based approaches and how they can support such functionality.

19.
IEEE Trans Vis Comput Graph ; 23(1): 31-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27514053

RESUMO

In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks. We introduce Matrix Diagnostics (or Magnostics), following in spirit related approaches for rating and ranking other visualization techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according to the appearance of specific visual patterns, such as blocks and lines, indicating the existence of topological motifs in the data, such as clusters, bi-graphs, or central nodes. Magnostics can be used to analyze, query, or search for visually similar matrices in large collections, or to assess the quality of matrix reordering algorithms. While many feature descriptors for image analyzes exist, there is no evidence how they perform for detecting patterns in matrices. In order to make an informed choice of feature descriptors for matrix diagnostics, we evaluate 30 feature descriptors-27 existing ones and three new descriptors that we designed specifically for MAGNOSTICS-with respect to four criteria: pattern response, pattern variability, pattern sensibility, and pattern discrimination. We conclude with an informed set of six descriptors as most appropriate for Magnostics and demonstrate their application in two scenarios; exploring a large collection of matrices and analyzing temporal networks.

20.
Brain Inform ; 3(4): 233-247, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27747817

RESUMO

Medical doctors and researchers in bio-medicine are increasingly confronted with complex patient data, posing new and difficult analysis challenges. These data are often comprising high-dimensional descriptions of patient conditions and measurements on the success of certain therapies. An important analysis question in such data is to compare and correlate patient conditions and therapy results along with combinations of dimensions. As the number of dimensions is often very large, one needs to map them to a smaller number of relevant dimensions to be more amenable for expert analysis. This is because irrelevant, redundant, and conflicting dimensions can negatively affect effectiveness and efficiency of the analytic process (the so-called curse of dimensionality). However, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We demonstrate the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we present SubVIS, an interactive tool to visually explore subspace clusters from different perspectives, introduce a novel analysis workflow, and discuss future directions for high-dimensional (medical) data analysis and its visual exploration. We apply the presented workflow to a real-world dataset from the medical domain and show its usefulness with a domain expert evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...