Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 516
Filtrar
1.
Mater Horiz ; 8(3): 685-699, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821312

RESUMO

This review revisits essential staining protocols for electron microscopy focussing on the visualization of active sites, i.e. enzymes, metabolites or proteins, in cells and tissues, which have been developed 50 to 60 years ago, however, never were established as standard protocols being used in electron microscopy in a routine fashion. These approaches offer numerous possibilities to expand the knowledge of cellular function and specifically address the localization of active compounds of these systems. It is our conviction, that many of these techniques are still useful, in particular when applied in conjunction with correlative light and electron microscopy. Revisiting specialized classical electron microscopy staining protocols for use in correlative microscopy is particularly promising, as some of these protocols were originally developed as staining methods for light microscopy. To account for this history, rather than summarizing the most recent achievements in literature, we instead first provide an overview of techniques that have been used in the past. While some of these techniques have been successfully implemented into modern microscopy techniques during recent years already, more possibilities are yet to be re-discovered and provide exciting new perspectives for their future use.

2.
Phys Chem Chem Phys ; 23(33): 18026-18034, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34612276

RESUMO

We report a novel hole conductive polymer with photoactive Os(ii) complexes in the side chains. This PPV derivative can be activated upon absorption of red visible light and delivers notable photocurrents when used as photocathode material. Thus, the polymer presents as a stepping stone towards developing soft matter alternatives to NiO photocathodes, which function under visible light irradiation. To show the concept we combine electrical impedance spectroscopy with steady state spectroscopy. As light-driven hole injection from Os complex to the PPV polymer is thermodynamically feasible both based on reductive quenching of photoexcited PPV and based on oxidative quenching of the photoexcited Os chromophores we investigate the impact of illumination wavelengths on the photocathode behavior and photochemical stability of the material. While both blue and red light excitation, i.e., excitation of the chromophoric units PPV and excitation of the metal-to-ligand charge transfer transitions in the side-chain pendant Os chromophores yield cathodic photocurrents, the photochemical stability is drastically enhanced upon red-light excitation. Hence, the results of the investigations discussed show the validity of the concept developing red-light sensitized hole-conducting polymers for energy conversion.

3.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638545

RESUMO

Even in the face of global vaccination campaigns, there is still an urgent need for effective antivirals against SARS-CoV-2 and its rapidly spreading variants. Several natural compounds show potential as antiviral substances and have the advantages of broad availabilities and large therapeutic windows. Here, we report that lectin from Triticum vulgaris (Wheat Germ Agglutinin) displays antiviral activity against SARS-CoV-2 and its major Variants of Concern (VoC), Alpha and Beta. In Vero B4 cells, WGA potently inhibits SARS-CoV-2 infection with an IC50 of <10 ng/mL. WGA is effective upon preincubation with the virus or when added during infection. Pull-down assays demonstrate direct binding of WGA to SARS-CoV-2, further strengthening the hypothesis that inhibition of viral entry by neutralizing free virions might be the mode of action behind its antiviral effect. Furthermore, WGA exhibits antiviral activity against human coronavirus OC43, but not against other non-coronaviruses causing respiratory tract infections. Finally, WGA inhibits infection of the lung cell line Calu-3 with wild type and VoC viruses with comparable IC50 values. Altogether, our data indicate that topical administration of WGA might be effective for prophylaxis or treatment of SARS-CoV-2 infections.


Assuntos
Antivirais/farmacologia , COVID-19/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Aglutininas do Germe de Trigo/farmacologia , Animais , Antivirais/química , COVID-19/virologia , Chlorocebus aethiops , Humanos , SARS-CoV-2/fisiologia , Triticum/química , Células Vero , Replicação Viral/efeitos dos fármacos , Aglutininas do Germe de Trigo/química
4.
Adv Sci (Weinh) ; : e2102429, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34687160

RESUMO

Particle sizes represent one of the key factors influencing the usability and specific targeting of nanoparticles in medical applications such as vectors for drug or gene therapy. A multi-layered graph convolutional network combined with a fully connected neuronal network is presented for the prediction of the size of nanoparticles based only on the polymer structure, the degree of polymerization, and the formulation parameters. The model is capable of predicting particle sizes obtained by nanoprecipitation of different poly(methacrylates). This includes polymers the network has not been trained with, indicating the high potential for generalizability of the model. By utilizing this model, a significant amount of time and resources can be saved in formulation optimization without extensive primary testing of material properties.

5.
Biomacromolecules ; 22(11): 4521-4534, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34643378

RESUMO

Conjugation of biologics with polymers modulates their pharmacokinetics, with polyethylene glycol (PEG) as the gold standard. We compared alternative polymers and two types of cyclooctyne linkers (BCN/DBCO) for bioconjugation of interferon-α2a (IFN-α2a) using 10 kDa polymers including linear mPEG, poly(2-ethyl-2-oxazoline) (PEtOx), and linear polyglycerol (LPG). IFN-α2a was azide functionalized via amber codon expansion and bioorthogonally conjugated to all cyclooctyne linked polymers. Polymer conjugation did not impact IFN-α2a's secondary structure and only marginally reduced IFN-α2a's bioactivity. In comparison to PEtOx, the LPG polymer attached via the less rigid cyclooctyne linker BCN was found to stabilize IFN-α2a against thermal stress. These findings were further detailed by molecular modeling studies which showed a modulation of protein flexibility upon PEtOx conjugation and a reduced amount of protein native contacts as compared to PEG and LPG originated bioconjugates. Polymer interactions with IFN-α2a were further assessed via a limited proteolysis (LIP) assay, which resulted in comparable proteolytic cleavage patterns suggesting weak interactions with the protein's surface. In conclusion, both PEtOx and LPG bioconjugates resulted in a similar biological outcome and may become promising PEG alternatives for bioconjugation.


Assuntos
Polietilenoglicóis , Polímeros , Glicerol , Interferon alfa-2 , Proteínas Recombinantes/genética
6.
EMBO Mol Med ; 13(10): e14436, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34472699

RESUMO

Jaundice, the clinical hallmark of infection-associated liver dysfunction, reflects altered membrane organization of the canalicular pole of hepatocytes and portends poor outcomes. Mice lacking phosphoinositide 3-kinase-γ (PI3Kγ) are protected against membrane disintegration and hepatic excretory dysfunction. However, they exhibit a severe immune defect that hinders neutrophil recruitment to sites of infection. To exploit the therapeutic potential of PI3Kγ inhibition in sepsis, a targeted approach to deliver drugs to hepatic parenchymal cells without compromising other cells, in particular immune cells, seems warranted. Here, we demonstrate that nanocarriers functionalized through DY-635, a fluorescent polymethine dye, and a ligand of organic anion transporters can selectively deliver therapeutics to hepatic parenchymal cells. Applying this strategy to a murine model of sepsis, we observed the PI3Kγ-dependent restoration of biliary canalicular architecture, maintained excretory liver function, and improved survival without impairing host defense mechanisms. This strategy carries the potential to expand targeted nanomedicines to disease entities with systemic inflammation and concomitantly impaired barrier functionality.


Assuntos
Hepatopatias , Sepse , Animais , Camundongos , Infiltração de Neutrófilos , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Sepse/tratamento farmacológico
7.
ChemSusChem ; 14(21): 4836-4845, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34473902

RESUMO

This work presents for the first time a new diglyme-based gel polymer (DOBn-GPE) suitable for Na-based energy storage devices. The DOBn-GPE, which contains a methacrylate-based polymer, exhibited an excellent high ionic conductivity (2.3 mS cm-1 at 20 °C), broad electrochemical stability (>5.0 V), and high mechanical stability. DOBn-GPE could be successfully used for the realization of Na-ion capacitors, sodium-metal batteries, and sodium-ion batteries, displaying performance comparable with those of systems containing liquid electrolytes at room temperature and at 60 °C. The results of these investigation indicated that the development of diglyme-based gel polymer electrolytes represents a promising strategy for the realization of advanced Na-based energy storage devices.

8.
Int J Gen Med ; 14: 5241-5249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526804

RESUMO

Purpose: The aim of this study was to investigate whether sucking of an iota-carrageenan containing lozenge releases sufficient iota-carrageenan into the saliva of healthy subjects to neutralize representatives of the most common respiratory virus families causing common cold and SARS-CoV-2. Patients and Methods: In this monocentric, open label, prospective clinical trial, 31 healthy subjects were included to suck a commercially available iota-carrageenan containing lozenge. Saliva samples from 27 subjects were used for ex vivo efficacy analysis. The study's primary objective was to assess if the mean iota-carrageenan concentration of the saliva samples exceeded 5 µg/mL, which is the concentration known to reduce replication of human rhinovirus (hRV) 1a and 8 by 90%. The iota-carrageenan concentration of the saliva samples was analyzed by UV-Vis spectroscopy. The antiviral effectiveness of the individual saliva samples was determined in vitro against a panel of respiratory viruses including hRV1a, hRV8, human coronavirus OC43, influenza virus A H1N1pdm09, coxsackievirus A10, parainfluenza virus 3 and SARS-CoV-2 using standard virological assays. Results: The mean iota-carrageenan concentration detected in the saliva exceeds the concentration needed to inhibit 90% of hRV1a and hRV8 replication by 134-fold (95% CI 116.3-160.8-fold; p < 0.001). Thus, the study met the primary endpoint. Furthermore, the iota-carrageenan saliva concentration was 60 to 30,351-fold higher than needed to reduce viral replication/binding of all tested viruses by at least 90% (p < 0.001). The effect was most pronounced in hCoV OC43; in case of SARS-CoV-2, the IC90 was exceeded by 121-fold (p < 0.001). Conclusion: Sucking an iota-carrageenan containing lozenge releases sufficient iota-carrageenan to neutralize and inactivate the most abundant respiratory viruses as well as pandemic SARS-CoV-2. The lozenges are therefore an appropriate measure to reduce the viral load at the site of infection, hereby presumably limiting transmission within a population as well as translocation to the lower respiratory tract. Trial Registration: NCT04533906.

9.
Polymers (Basel) ; 13(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372160

RESUMO

Seven polycaprolactones (PCL) with constant hydrophobicity but a varying degree of crystallinity prepared from the constitutional isomers ε-caprolactone (εCL) and δ-caprolactone (δCL) were utilized to formulate nanoparticles (NPs). The aim was to investigate the effect of the crystallinity of the bulk polymers on the enzymatic degradation of the particles. Furthermore, their efficiency to encapsulate the hydrophobic anti-inflammatory drug BRP-187 and the final in vitro performance of the resulting NPs were evaluated. Initially, high-throughput nanoprecipitation was employed for the εCL and δCL homopolymers to screen and establish important formulation parameters (organic solvent, polymer and surfactant concentration). Next, BRP-187-loaded PCL nanoparticles were prepared by batch nanoprecipitation and characterized using dynamic light scattering, scanning electron microscopy and UV-Vis spectroscopy to determine and to compare particle size, polydispersity, zeta potential, drug loading as well as the apparent enzymatic degradation as a function of the copolymer composition. Ultimately, NPs were examined for their potency in vitro in human polymorphonuclear leukocytes to inhibit the BRP-187 target 5-lipoxygenase-activating protein (FLAP). It was evident by Tukey's multi-comparison test that the degree of crystallinity of copolymers directly influenced their apparent enzymatic degradation and consequently their efficiency to inhibit the drug target.

10.
Chem Sci ; 12(27): 9275-9286, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349897

RESUMO

The halogen bond is a special non-covalent interaction, which can represent a powerful tool in supramolecular chemistry. Although the halogen bond offers several advantages compared to the related hydrogen bond, it is currently still underrepresented in polymer science. The structural related hydrogen bonding assumes a leading position in polymer materials containing supramolecular interactions, clearly indicating the high potential of using halogen bonding for the design of polymeric materials. The current developments regarding halogen bonding containing polymers include self-assembly, photo-responsive materials, self-healing materials and others. These aspects are highlighted in the present perspective. Furthermore, a perspective on the future of this rising young research field is provided.

11.
ACS Nano ; 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34270899

RESUMO

Dye-loaded micelles of 10 nm diameter formed from amphiphilic graft copolymers composed of a hydrophobic poly(methyl methacrylate) backbone and hydrophilic poly(2-ethyl-2-oxazoline) side chains with a degree of polymerization of 15 were investigated concerning their cellular interaction and uptake in vitro as well as their interaction with local and circulating cells of the reticuloendothelial system in the liver by intravital microscopy. Despite the high molar mass of the individual macromolecules (Mn ≈ 20 kg mol-1), backbone end group modification by attachment of a hydrophilic anionic fluorescent probe strongly affected the in vivo performance. To understand these effects, the end group was additionally modified by the attachment of four methacrylic acid repeating units. Although various micelles appeared similar in dynamic light scattering and cryo-transmission electron microscopy, changes in the micelles were evident from principal component analysis of the Raman spectra. Whereas an efficient stealth effect was found for micelles formed from polymers with anionically charged or thiol end groups, a hydrophobic end group altered the micelles' structure sufficiently to adapt cell-type specificity and stealth properties in the liver.

12.
J Chromatogr A ; 1653: 462364, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34280792

RESUMO

Hydrophilic poly(2-oxazoline)s represent a promising alternative to replace poly(ethylene glycol) in the biomedical field. For that purpose, reliable analytical protocols to confirm identity and quantity of impurities are required. In particular, side products deriving from chain transfer reactions occurring during the cationic ring-opening polymerization and incomplete end-capping processes may be present. The analytical approach must hence be capable of separating polymers according to minor changes regarding their end group. We demonstrate that liquid chromatography, relying on a monolithic C18-modified silica column and isocratic as well as gradient elution using water / acetonitrile mixtures and varying detectors, can accomplish such demanding high resolution separations. Poly(2-ethyl-2-oxazoline)s (PEtOx) with acetyl, hydroxyl, and phthalimide ω-end groups were investigated. Identification of side products was achieved through coupling with electrospray ionization mass spectrometry. UV / Vis detection was applied to quantify chain transfer products in PEtOx comprising biphenyl moieties. In addition, gradient elution enabled the separation of PEtOx into macromolecules according to their specific degrees of polymerization in molar mass ranges around 2,000 g mol-1.


Assuntos
Cromatografia Líquida , Polímeros , Peso Molecular , Polímeros/síntese química , Prótons
13.
Diabetes ; 70(9): 2014-2025, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34233931

RESUMO

Persons living with HIV (PLWH) manifest chronic disorders of brown and white adipose tissues that lead to diabetes and metabolic syndrome. The mechanisms that link viral factors to defective adipose tissue function and abnormal energy balance in PLWH remain incompletely understood. Here, we explored how the HIV accessory protein viral protein R (Vpr) contributes to adaptive thermogenesis in two mouse models and human adipose tissues. Uncoupling protein 1 (UCP1) gene expression was strongly increased in subcutaneous white adipose tissue (WAT) biopsy specimens from PLWH and in subcutaneous WAT of the Vpr mice, with nearly equivalent mRNA copy number. Histology and functional studies confirmed beige transformation in subcutaneous but not visceral WAT in the Vpr mice. Measurements of energy balance indicated Vpr mice displayed metabolic inflexibility and could not shift efficiently from carbohydrate to fat metabolism during day-night cycles. Furthermore, Vpr mice showed a marked inability to defend body temperature when exposed to 4°C. Importantly, Vpr couples higher tissue catecholamine levels with UCP1 expression independent of ß-adrenergic receptors. Our data reveal surprising deficits of adaptive thermogenesis that drive metabolic inefficiency in HIV-1 Vpr mouse models, providing an expanded role for viral factors in the pathogenesis of metabolic disorders in PLWH.


Assuntos
Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Termogênese/fisiologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Tecido Adiposo Marrom/metabolismo , Adulto , Temperatura Corporal/fisiologia , Metabolismo Energético/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Proteína Desacopladora 1/metabolismo
14.
Beilstein J Nanotechnol ; 12: 541-551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194890

RESUMO

The stability of surface-enhanced Raman spectroscopy (SERS) substrates in different organic solvents and different buffer solutions was investigated. SERS substrates were fabricated by a microwave-assisted synthesis approach and the morphological as well as chemical changes of the SERS substrates were studied. It was demonstrated that the SERS substrates treated with methanol, ethanol, or N,N-dimethylformamide (DMF) were comparable and showed overall good stability and did not show severe morphological changes or a strong decrease in their Raman activity. Toluene treatment resulted in a strong decrease in the Raman activity whereas dimethyl sulfoxide (DMSO) treatment completely preserved or even slightly improved the Raman enhancement capabilities. SERS substrates immersed into phosphate-buffered saline (PBS) solutions were observed to be rather instable in low and neutral pH buffer solutions. Other buffer systems showed less severe influences on the SERS activity of the substrates and a carbonate buffer at pH 10 was found to even improve SERS performance. This study represents a guideline on the stability of microwave-fabricated SERS substrates or other SERS substrates consisting of non-stabilized silver nanoparticles for the application of different organic solvents and buffer solutions.

15.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201612

RESUMO

Owing to their broad range of redox potential, quinones/hydroquinones can be utilized for energy storage in redox flow batteries. In terms of stability, organic catholytes are more challenging than anolytes. The two-electron transfer feature adds value when building all-quinone flow battery systems. However, the dimerization of quinones/hydroquinones usually makes it difficult to achieve a full two-electron transfer in practical redox flow battery applications. In this work, we designed and synthesized four new hydroquinone derivatives bearing morpholinomethylene and/or methyl groups in different positions on the benzene ring to probe molecular stability upon battery cycling. The redox potential of the four molecules were investigated, followed by long-term stability tests using different supporting electrolytes and cell cycling methods in a symmetric flow cell. The derivative with two unoccupied ortho positions was found highly unstable, the cell of which exhibited a capacity decay rate of ~50% per day. Fully substituted hydroquinones turned out to be more stable. In particular, 2,6-dimethyl-3,5-bis(morpholinomethylene)benzene-1,4-diol (asym-O-5) displayed a capacity decay of only 0.45%/day with four-week potentiostatic cycling at 0.1 M in 1 M H3PO4. In addition, the three fully substituted hydroquinones displayed good accessible capacity of over 82%, much higher than those of conventional quinone derivatives.

16.
Membranes (Basel) ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070143

RESUMO

Flexible cross-linked anion exchange membranes (AEMs) based on poly (p-phenylene oxide) grafted with N-spirocyclic quaternary ammonium cations were synthesized via UV-induced free-radical polymerization by using diallylpiperidinium chloride as an ionic monomer. Five membranes with ion exchange capacity (IEC) varying between 1.5 to 2.8 mmol Cl-·g-1 polymer were obtained and the correlation between IEC, water uptake, state of water in the membrane and ionic conductivity was studied. In the second part of this study, the influence of properties of four of these membranes on cell cycling stability and performance was investigated in an aqueous organic redox flow battery (AORFB) employing dimethyl viologen (MV) and N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TMA-TEMPO). The influence of membrane properties on cell cycling stability and performance was studied. At low-current density (20 mA·cm-2), the best capacity retention was obtained with lower IEC membranes for which the water uptake, freezable water and TMA-TEMPO and MV crossover are low. However, at a high current density (80 mA·cm-2), membrane resistance plays an important role and a membrane with moderate IEC, more precisely, moderate ion conductivity and water uptake was found to maintain the best overall cell performance. The results in this work contribute to the basic understanding of the relationship between membrane properties and cell performance, providing insights guiding the development of advanced membranes to improve the efficiency and power capability for AORFB systems.

17.
Inorg Chem ; 60(12): 9157-9173, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34081456

RESUMO

Photoactive metal complexes containing earth-abundant transition metals recently gained interest as photosensitizers in light-driven chemistry. In contrast to the traditionally employed ruthenium or iridium complexes, iron complexes developed to be promising candidates despite the fact that using iron complexes as photosensitizers poses an inherent challenge associated with the low-lying metal-centered states, which are responsible for ultrafast deactivation of the charge-transfer states. Nonetheless, recent developments of strongly σ-donating carbene ligands yielded highly promising systems, in which destabilized metal-centered states resulted in prolonged lifetimes of charge-transfer excited states. In this context, we introduce a series of novel homoleptic Fe-triazolylidene mesoionic carbene complexes. The excited-state properties of the complexes were investigated by time-resolved femtosecond transient absorption spectroscopy and quantum chemical calculations. Pump wavelength-dependent transient absorption reveals the presence of distinct excited-state relaxation pathways. We relate the excitation-wavelength-dependent branching of the excited-state dynamics into various reaction channels to solvent-dependent photodissociation following the population of dissociative metal centered states upon excitation at 400 nm.

18.
Chem Soc Rev ; 50(11): 6507-6540, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100051

RESUMO

In this review, we aim to update our review "Chemical modification of self-assembled silane-based monolayers by surface reactions" which was published in 2010 and has developed into an important guiding tool for researchers working on the modification of solid substrate surface properties by chemical modification of silane-based self-assembled monolayers. Due to the rapid development of this field of research in the last decade, the utilization of chemical functionalities in self-assembled monolayers has been significantly improved and some new processes were introduced in chemical surface reactions for tailoring the properties of solid substrates. Thus, it is time to update the developments in the surface functionalization of silane-based molecules. Hence, after a short introduction on self-assembled monolayers, this review focuses on a series of chemical reactions, i.e., nucleophilic substitution, click chemistry, supramolecular modification, photochemical reaction, and other reactions, which have been applied for the modification of hydroxyl-terminated substrates, like silicon and glass, which have been reported during the last 10 years.

19.
Chemistry ; 27(44): 11239-11256, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34018652

RESUMO

Homometallic titanium oxo clusters are one of the most important groups of metal oxo clusters, with more than 300 examples characterized by X-ray structure analyses. Most of them are uncharged and are obtained by partial hydrolysis and condensation of titanium alkoxo derivatives. The cluster cores, ranging from 3 to >50 titanium atoms, are stabilized by organic ligands. Apart from residual OR groups, carboxylato and phosphonato ligands are most frequent. The article critically reviews and categorizes the known structures and works out basic construction principles by comparing the different cluster types.

20.
Macromol Rapid Commun ; 42(13): e2100132, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33960561

RESUMO

The incorporation of an amino group into a bifunctional initiator for the cationic ring-opening polymerization (CROP) is achieved in a two-step reaction. Detailed kinetic studies using 2-ethyl-2-oxazoline demonstrate the initiators' eligibility for the CROP yielding well-defined polymers featuring molar masses of about 2000 g mol-1 . Deprotection of the phthalimide moiety subsequent to polymerization enables the introduction of a cyclooctyne group in central position of the polymer which is further exploited in a strain-promoted alkyne-azide click reaction (SpAAC) with a Fmoc-protected azido lysine representing a commonly used binding motif for site specific polymer-protein/peptide conjugation. In-depth characterization via electrospray ionization mass spectrometry (ESI) confirms the success of all post polymerization modification steps.


Assuntos
Oxazóis , Cinética , Poliaminas , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...