Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32179881

RESUMO

Indium tin oxide (ITO) is a heavily doped semiconductor with a plasmonic response in the near infrared region. When exposed to light, the distribution of conduction band electron induces a change in the real and imaginary parts of the dielectric permittivity. The coupling of the electromagnetic waves with the electrons in the conduction band of metallic nanostructures with ultrashort light pulses results in a nonlinear plasmonic response. Such optical modulation occurring on ultrafast time scales, e.g. picosecond response times, can be exploited and used to create integrated optical components with terahertz modulation speed. Here, we present a photophysical study on a one dimensional ITO grating, realized using a femtosecond micromachining process, a very industrially accessible technology. The geometries, dimensions and pitch of the various gratings analyzed are obtained by means of direct ablation in a controlled atmosphere of a homogeneous thin layer of ITO deposited on a glass substrate. The pitch has been selected in order to obtain a higher order of the photonic band gap in the visible spectral region. Femtosecond micromachining technology guarantees precision, repeatability and extreme manufacturing flexibility. By means of ultrafast pump-probe spectroscopy, we characterize both the plasmon and inter-band temporal dynamics. We observe a large optical nonlinearity of the ITO grating in the visible range, where the photonic band gap occurs, when pumped at the surface plasmon resonance in the near infrared (1500 nm) region. All together, we show the possibility of all-optical signal modulation with heavily doped semiconductors in their transparency window with a picosecond response time through the formation of ITO grating structures.

2.
J Phys Chem Lett ; : 4980-4986, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31407906

RESUMO

Photonic crystal-based biosensors hold great promise as low-cost devices for real-time monitoring of a variety of biotargets, for example, bacterial contaminants in food. Here, we report the proof-of-concept for a new colorimetric sensor of bacterial contamination, which is based on a novel hybrid plasmonic-photonic device. Our system consists of a layer of silver, a plasmonic metal exhibiting a well-known bioactivity, on top of a one-dimensional photonic crystal. We attribute the bioresponsivity to the formation of polarization charges at the Ag/bacterium interface within a sort of "bio-doping" mechanism. Interestingly, this triggers a blue shift in the photonic response. As an example, we assessed the validity of our approach by detecting one of the most hazardous contaminants, Escherichia coli. This work demonstrates that our device can be a low-cost and portable platform for the detection of common bacterial contaminants.

3.
J Am Chem Soc ; 141(32): 12797-12803, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31330100

RESUMO

A π-extended double [7]carbohelicene 2 with fused pyrene units was synthesized, revealing considerable intra- and intermolecular π-π interactions as confirmed with X-ray crystallography. As compared to the previous double [7]carbohelicene 1, the π-extended homologue 2 demonstrated considerably red-shifted absorption with an onset at 645 nm (1: 550 nm) corresponding to a smaller optical gap of 1.90 eV (1: 2.25 eV). A broad near-infrared emission from 600 to 900 nm with a large Stokes shift of ∼100 nm (2.3 × 103 cm-1) was recorded for 2, implying formation of an intramolecular excimer upon excitation, which was corroborated with femtosecond transient absorption spectroscopy. Moreover, 2 revealed remarkable chiral stability with a fairly high isomerization barrier of 46 kcal mol-1, according to density functional theory calculations, which allowed optical resolution by chiral HPLC and suggests potential applications in chiroptical devices.

4.
J Am Chem Soc ; 141(10): 4230-4234, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30794391

RESUMO

Regioselective peripheral hydrogenation of a nanographene molecule with 60 contiguous sp2 carbons provides unprecedented access to peralkylated circumbiphenyl (1). Conversion to the circumbiphenyl core structure was unambiguously validated by MALDI-TOF mass spectrometry, NMR, FT-IR, and Raman spectroscopy. UV-vis absorption spectra and DFT calculations demonstrated the significant change of the optoelectronic properties upon peripheral hydrogenation. Stimulated emission from 1, observed via ultrafast transient absorption measurements, indicates potential as an optical gain material.

5.
Nano Lett ; 18(8): 5211-5216, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29985622

RESUMO

Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique, synergistic electronic and optical properties as a result of combining semiconductor and metal physics via a controlled interface. These structures can exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. The combination of the photocatalytic activity of the metal domain with the ability to generate and accommodate multiple excitons in the semiconducting domain can lead to improved photocatalytic performance because injecting multiple charge carriers into the active catalytic sites can increase the quantum yield. Herein, we show a significant metal domain size dependence of the charge carrier dynamics as well as the photocatalytic hydrogen generation efficiencies under nonlinear excitation conditions. An understanding of this size dependence allows one to control the charge carrier dynamics following the absorption of light. Using a model hybrid semiconductor-metal CdS-Au nanorod system and combining transient absorption and hydrogen evolution kinetics, we reveal faster and more efficient charge separation and transfer under multiexciton excitation conditions for large metal domains compared to small ones. Theoretical modeling uncovers a competition between the kinetics of Auger recombination and charge separation. A crossover in the dominant process from Auger recombination to charge separation as the metal domain size increases allows for effective multiexciton dissociation and harvesting in large metal domain HNPs. This was also found to lead to relative improvement of their photocatalytic activity under nonlinear excitation conditions.

6.
Nat Nanotechnol ; 13(7): 572-577, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915271

RESUMO

Reducing the size of lasers to microscale dimensions enables new technologies1 that are specifically tailored for operation in confined spaces ranging from ultra-high-speed microprocessors2 to live brain tissue3. However, reduced cavity sizes increase optical losses and require greater input powers to reach lasing thresholds. Multiphoton-pumped lasers4-7 that have been miniaturized using nanomaterials such as lanthanide-doped upconverting nanoparticles (UCNPs)8 as lasing media require high pump intensities to achieve ultraviolet and visible emission and therefore operate under pulsed excitation schemes. Here, we make use of the recently described energy-looping excitation mechanism in Tm3+-doped UCNPs9 to achieve continuous-wave upconverted lasing action in stand-alone microcavities at excitation fluences as low as 14 kW cm-2. Continuous-wave lasing is uninterrupted, maximizing signal and enabling modulation of optical interactions10. By coupling energy-looping nanoparticles to whispering-gallery modes of polystyrene microspheres, we induce stable lasing for more than 5 h at blue and near-infrared wavelengths simultaneously. These microcavities are excited in the biologically transmissive second near-infrared (NIR-II) window and are small enough to be embedded in organisms, tissues or devices. The ability to produce continuous-wave lasing in microcavities immersed in blood serum highlights practical applications of these microscale lasers for sensing and illumination in complex biological environments.


Assuntos
Lasers , Nanopartículas/química , Nanotecnologia/instrumentação , Túlio/química , Animais , Bovinos , Desenho de Equipamento , Luz , Substâncias Luminescentes/química , Microesferas , Poliestirenos/química , Soro/química
7.
ACS Nano ; 12(5): 4536-4544, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29727169

RESUMO

Silicon photonics would strongly benefit from monolithically integrated low-threshold silicon-based laser operating at room temperature, representing today the main challenge toward low-cost and power-efficient electronic-photonic integrated circuits. Here we demonstrate low-threshold lasing from fully transparent nanostructured porous silicon (PSi) monolithic microcavities (MCs) infiltrated with a polyfluorene derivative, namely, poly(9,9-di- n-octylfluorenyl-2,7-diyl) (PFO). The PFO-infiltrated PSiMCs support single-mode blue lasing at the resonance wavelength of 466 nm, with a line width of ∼1.3 nm and lasing threshold of 5 nJ (15 µJ/cm2), a value that is at the state of the art of PFO lasers. Furthermore, time-resolved photoluminescence shows a significant shortening (∼57%) of PFO emission lifetime in the PSiMCs, with respect to nonresonant PSi reference structures, confirming a dramatic variation of the radiative decay rate due to a Purcell effect. Our results, given also that blue lasing is a worst case for silicon photonics, are highly appealing for the development of low-cost, low-threshold silicon-based lasers with wavelengths tunable from visible to the near-infrared region by simple infiltration of suitable emitting polymers in monolithically integrated nanostructured PSiMCs.

8.
Sci Rep ; 8(1): 3517, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476146

RESUMO

We report the first demonstration of a solution processable, optically switchable 1D photonic crystal which incorporates phototunable doped metal oxide nanocrystals. The resulting device structure shows a dual optical response with the photonic bandgap covering the visible spectral range and the plasmon resonance of the doped metal oxide the near infrared. By means of a facile photodoping process, we tuned the plasmonic response and switched effectively the optical properties of the photonic crystal, translating the effect from the near infrared to the visible. The ultrafast bandgap pumping induces a signal change in the region of the photonic stopband, with recovery times of several picoseconds, providing a step toward the ultrafast optical switching. Optical modeling uncovers the importance of a complete modeling of the variations of the dielectric function of the photodoped material, including the high frequency region of the Drude response which is responsible for the strong switching in the visible after photodoping. Our device configuration offers unprecedented tunability due to flexibility in device design, covering a wavelength range from the visible to the near infrared. Our findings indicate a new protocol to modify the optical response of photonic devices by optical triggers only.

9.
Nano Lett ; 17(12): 7691-7695, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29125777

RESUMO

The quest for materials with metal-like properties as alternatives to noble metals is an intense area of research that is set to lead to dramatic improvements in technologies based on plasmonics. Here, we present intermediate band (IB) semiconductor nanocrystals (NCs) as a class of all-dielectric nanomaterials providing quasi-static optical resonances. We show that IB NCs can display a negative permittivity in a broad range of visible wavelengths, enabling a metal-like optical response despite the absence of free carriers in the NC ground state. Using a combination of spectroscopy measurements and ab initio calculations, we hereby provide a theoretical model for both the linear and nonlinear optical properties of chalcopyrite CuFeS2 NCs, as a case study of IB semiconductor nanomaterials. Our results rationalize the high performance of IB nanomaterials as photothermal agents and suggest the use of IB semiconductors as alternatives to noble metals for technologies based on plasmonic materials.

10.
J Phys Chem Lett ; 8(10): 2285-2290, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28467717

RESUMO

We use two-dimensional electronic spectroscopy (2DES) to disentangle the separate electron and hole relaxation pathways and dynamics of CdTe nanorods on a sub-100 fs time scale. By simultaneously exciting and probing the first three excitonic transitions (S1, S2, and S3) and exploiting the unique combination of high temporal and spectral resolution of 2DES, we derive a complete picture for the state-selective carrier relaxation. We find that hot holes relax from the 1Σ3/2 to the 1Σ1/2 state (S2 → S1) with 30 ± 10 fs time constant, and the hot electrons relax from the Σ' to the Σ state (S3 → S1) with 50 ± 10 fs time constant. This observation would not have been possible with conventional transient absorption spectroscopy due to the spectral congestion of the transitions and the very fast relaxation time scales.

11.
Angew Chem Int Ed Engl ; 56(24): 6753-6757, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28493640

RESUMO

A large number of graphene molecules, or large polycyclic aromatic hydrocarbons (PAHs), have been synthesized and display various optoelectronic properties. Nevertheless, their potential for application in photonics has remained largely unexplored. Herein, we describe the synthesis of a highly luminescent and stable graphene molecule, namely a substituted dibenzo[hi,st]ovalene (DBO 1), with zigzag edges and elucidate its promising optical-gain properties by means of ultrafast transient absorption spectroscopy. Upon incorporation of DBO into an inert polystyrene matrix, amplified stimulated emission can be observed with a relatively low power threshold (ca. 60 µJ cm-2 ), thus highlighting its high potential for lasing applications.

12.
J Am Chem Soc ; 139(3): 1198-1206, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28005337

RESUMO

We report the colloidal synthesis of ∼5.5 nm inverse spinel-type oxide Ga2FeO4 (GFO) nanocrystals (NCs) with control over the gallium and iron content. As recently theoretically predicted, some classes of spinel-type oxide materials can be intrinsically doped by means of structural disorder and/or change in stoichiometry. Here we show that, indeed, while stoichiometric Ga2FeO4 NCs are intrinsic small bandgap semiconductors, off-stoichiometric GFO NCs, produced under either Fe-rich or Ga-rich conditions, behave as degenerately doped semiconductors. As a consequence of the generation of free carriers, both Fe-rich and Ga-rich GFO NCs exhibit a localized surface plasmon resonance in the near-infrared at ∼1000 nm, as confirmed by our pump-probe absorption measurements. Noteworthy, the photoelectrochemical characterization of our GFO NCs reveal that the majority carriers are holes in Fe-rich samples, and electrons in Ga-rich ones, highlighting the bipolar nature of this material. The behavior of such off-stoichiometric NCs was explained by our density functional theory calculations as follows: the substitution of Ga3+ by Fe2+ ions, occurring in Fe-rich conditions, can generate free holes (p-type doping), while the replacement of Fe2+ by Ga3+ cations, taking place in Ga-rich samples, produces free electrons (n-type doping). These findings underscore the potential relevance of spinel-type oxides as p-type transparent conductive oxides and as plasmonic semiconductors.

13.
Beilstein J Nanotechnol ; 7: 1404-1410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826514

RESUMO

An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.

14.
Appl Opt ; 55(32): 9288-9292, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27857323

RESUMO

The latest achievements in the fabrication of thin layers of black phosphorus (BP), toward the technological breakthrough of a phosphorene atomically thin layer, are paving the way for their use in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e., photonic crystals and microcavities, in which few-layer BP is one of the components. The insertion of the 5-nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity that is interesting for light manipulation and emission enhancement.

15.
J Phys Chem Lett ; 7(19): 3873-3881, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27632026

RESUMO

We show the ultrafast photodoping and plasmon dynamics of the near-infrared (NIR) localized surface plasmon resonance (LSPR) of fluorine-indium codoped cadmium oxide (FICO) nanocrystals (NCs). The combination of high temporal resolution and broad spectral coverage allowed us to model the transient absorption (TA) spectra in terms of the Drude model, verifying the increase in carrier density upon ultrafast photodoping. Our analysis also suggests that a change in carrier effective mass takes place upon LSPR excitation as a result of the nonparabolic conduction band of the doped semiconductor with a consequently high signal response. Both findings are combined in this new type of plasmonic material. The combination of large transmission modulation with modest pump powers and ultrafast recombination times makes our results interesting for all-optical signal processing at optical communication wavelengths. At the same time, our results also give insights into the physical mechanisms of ultrafast photodoping and LSPR tuning of degenerately doped semiconductor NCs.

16.
J Phys Chem Lett ; 7(17): 3353-8, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27508347

RESUMO

Nowadays, SWCNTs are envisaged to enhance the charge separation or transport of conjugated polymer-fullerene derivatives blends. In this work we studied, by means of ultrafast transient absorption spectroscopy, three components blends in which commercially available SWCNTs are added to the standard bulk heterojunction. We explored three different configurations that give rise to diverse interfacing scenarios. We found strong evidence of a direct hole transfer from photoexcited SWCNTs to the P3HT polymer. The transfer efficiency depends on the interface configuration. It is the highest for the blend where we achieve closer contact between the (6,5) SWCNTs and the polymer. When the polymer blend is deposited on top of the nanotube film or the nanotube film is deposited onto the polymer blend, the process is slowed down due to less or missing interfacing of the carbon nanotubes with the polymer chains. Additionally we demonstrate a cascading effect in the electron path, which stabilizes charge separation by further transferring the electron left behind by hole transfer to the polymer to the adjacent (7,5) SWCNTs. Our results highlight the potential of semiconducting SWCNTs to improving the performance of organic solar cells.

17.
Nat Commun ; 7: 10413, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26783194

RESUMO

Semiconductor-metal hybrid nanostructures offer a highly controllable platform for light-induced charge separation, with direct relevance for their implementation in photocatalysis. Advances in the synthesis allow for control over the size, shape and morphology, providing tunability of the optical and electronic properties. A critical determining factor of the photocatalytic cycle is the metal domain characteristics and in particular its size, a subject that lacks deep understanding. Here, using a well-defined model system of cadmium sulfide-gold nanorods, we address the effect of the gold tip size on the photocatalytic function, including the charge transfer dynamics and hydrogen production efficiency. A combination of transient absorption, hydrogen evolution kinetics and theoretical modelling reveal a non-monotonic behaviour with size of the gold tip, leading to an optimal metal domain size for the most efficient photocatalysis. We show that this results from the size-dependent interplay of the metal domain charging, the relative band-alignments, and the resulting kinetics.

18.
Chem Mater ; 28(13): 4848-4858, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29033496

RESUMO

We describe the colloidal hot-injection synthesis of phase-pure nanocrystals (NCs) of a highly abundant mineral, chalcopyrite (CuFeS2). Absorption bands centered at around 480 and 950 nm, spanning almost the entire visible and near-infrared regions, encompass their optical extinction characteristics. These peaks are ascribable to electronic transitions from the valence band (VB) to the empty intermediate band (IB), located in the fundamental gap and mainly composed of Fe 3d orbitals. Laser-irradiation (at 808 nm) of an aqueous suspension of CuFeS2 NCs exhibited significant heating, with a photothermal conversion efficiency of 49%. Such efficient heating is ascribable to the carrier relaxation within the broad IB band (owing to the indirect VB-IB gap), as corroborated by transient absorption measurements. The intense absorption and high photothermal transduction efficiency (PTE) of these NCs in the so-called biological window (650-900 nm) make them suitable for photothermal therapy as demonstrated by tumor cell annihilation upon laser irradiation. The otherwise harmless nature of these NCs in dark conditions was confirmed by in vitro toxicity tests on two different cell lines. The presence of the deep Fe levels constituting the IB is the origin of such enhanced PTE, which can be used to design other high performing NC photothermal agents.

19.
Sci Rep ; 5: 9681, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25959462

RESUMO

Theory predicts peculiar features for excited-state dynamics in one dimension (1D) that are difficult to be observed experimentally. Single-walled carbon nanotubes (SWNTs) are an excellent approximation to 1D quantum confinement, due to their very high aspect ratio and low density of defects. Here we use ultrafast optical spectroscopy to probe photogenerated charge-carriers in (6,5) semiconducting SWNTs. We identify the transient energy shift of the highly polarizable S33 transition as a sensitive fingerprint of charge-carriers in SWNTs. By measuring the coherent phonon amplitude profile we obtain a precise estimate of the Stark-shift and discuss the binding energy of the S33 excitonic transition. From this, we infer that charge-carriers are formed instantaneously (<50 fs) even upon pumping the first exciton, S11. The decay of the photogenerated charge-carrier population is well described by a model for geminate recombination in 1D.

20.
Chem Mater ; 27(3): 1120-1128, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25960605

RESUMO

Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump-probe measurements on platelet-shaped Cu3-x P NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-x P NCs. It is likely that both the LSPR and the p-type character of our Cu3-x P NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-x P NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-x P NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-x P is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-x P/InP heterostructures, as a consequence of the fact that the exchange between Cu+ and In3+ ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-x P NCs an interesting material platform from which to access other metal phosphides by cation exchange.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA