Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Med Genet ; 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461977

RESUMO

BACKGROUND: Congenital diaphragmatic hernia (CDH) is a life-threatening birth defect that often co-occurs with non-hernia-related anomalies (CDH+). While copy number variant (CNV) analysis is often employed as a diagnostic test for CDH+, clinical exome sequencing (ES) has not been universally adopted. METHODS: We analysed a clinical database of ~12 000 test results to determine the diagnostic yields of ES in CDH+ and to identify new phenotypic expansions. RESULTS: Among the 76 cases with an indication of CDH+, a molecular diagnosis was made in 28 cases for a diagnostic yield of 37% (28/76). A provisional diagnosis was made in seven other cases (9%; 7/76). Four individuals had a diagnosis of Kabuki syndrome caused by frameshift variants in KMT2D. Putatively deleterious variants in ALG12 and EP300 were each found in two individuals, supporting their role in CDH development. We also identified individuals with de novo pathogenic variants in FOXP1 and SMARCA4, and compound heterozygous pathogenic variants in BRCA2. The role of these genes in CDH development is supported by the expression of their mouse homologs in the developing diaphragm, their high CDH-specific pathogenicity scores generated using a previously validated algorithm for genome-scale knowledge synthesis and previously published case reports. CONCLUSION: We conclude that ES should be ordered in cases of CDH+ when a specific diagnosis is not suspected and CNV analyses are negative. Our results also provide evidence in favour of phenotypic expansions involving CDH for genes associated with ALG12-congenital disorder of glycosylation, Rubinstein-Taybi syndrome, Fanconi anaemia, Coffin-Siris syndrome and FOXP1-related disorders.

2.
Am J Med Genet A ; 185(3): 836-840, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33443296

RESUMO

Fibroblast growth factor receptor-like 1 (FGFRL1) encodes a transmembrane protein that is related to fibroblast growth factor receptors but lacks an intercellular tyrosine kinase domain. in vitro studies suggest that FGFRL1 inhibits cell proliferation and promotes cell differentiation and cell adhesion. Mice that lack FGFRL1 die shortly after birth from respiratory distress and have abnormally thin diaphragms whose muscular hypoplasia allows the liver to protrude into the thoracic cavity. Haploinsufficiency of FGFRL1 has been hypothesized to contribute to the development of congenital diaphragmatic hernia (CDH) associated with Wolf-Hirschhorn syndrome. However, data from both humans and mice suggest that disruption of one copy of FGFRL1 alone is insufficient to cause diaphragm defects. Here we report a female fetus with CDH whose 4p16.3 deletion allows us to refine the Wolf-Hirschhorn syndrome CDH critical region to an approximately 1.9 Mb region that contains FGFRL1. We also report a male infant with isolated left-sided diaphragm agenesis who carried compound heterozygous missense variants in FGFRL1. These cases provide additional evidence that deleterious FGFRL1 variants may contribute to the development of CDH in humans.

3.
J Pediatr Urol ; 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33281045

RESUMO

INTRODUCTION: Hypospadias, one of the most common male genital birth defects, occurs in 1 out of every 200 male births in the United States and is increasing in prevalence globally. OBJECTIVE: This study aimed to characterize the combinations of birth defects that co-occur with hypospadias more often than expected by chance, while accounting for the complex clustering patterns of congenital defects. STUDY DESIGN: We analyzed cases with hypospadias and at least one additional co-occurring defect from the Texas Birth Defect Registry born between 1999 and 2014. For each combination, we calculated adjusted observed-to-expected (O/E) ratios, using Co-Occurring Defect Analysis (CODA). RESULTS: Among 16,442 cases with hypospadias and without known syndromes, 2,084 (12.7%) had at least one additional defect. Many of the birth defect combinations within the highest adjusted O/E ratios included cardiac, musculoskeletal, and additional urogenital defects. For example, a top combination with an adjusted O/E of 139.0 included renal agenesis and dysgenesis, reduction defects of the upper limb, and other anomalies of upper limb (including shoulder girdle). High adjusted O/E ratios were also observed in combinations that included defects outside of the urogenital developmental field. For instance, the combination with the highest O/E ratio included buphthalmos, and congenital cataract and lens anomalies (adjusted O/E ratio: 192.9). Similar results were obtained when we restricted our analyses to cases with second- or third-degree hypospadias. DISCUSSION: Many combinations in the top results were expected (e.g., multiple urogenital defects); however, some combinations with seemingly unrelated patterns of defects may suggest the presence of some etiologic mechanisms yet to be identified. CONCLUSION: In summary, this study described patterns of co-occurring defect combinations with hypospadias that can inform further study and may provide insights for screening and diagnostic practices.

4.
Ophthalmic Epidemiol ; : 1-8, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33345678

RESUMO

PURPOSE: Infants with anophthalmia or microphthalmia frequently have co-occurring birth defects. Nonetheless, there have been few investigations of birth defect patterns among these children. Such studies may identify novel multiple malformation syndromes, which could inform future research into the developmental processes that lead to anophthalmia/microphthalmia and assist physicians in determining whether further testing is appropriate. METHODS: This study includes cases with anophthalmia/microphthalmia identified by the Texas Birth Defects Registry from 1999 to 2014 without clinical or chromosomal diagnoses of recognized syndromes. We calculated adjusted observed-to-expected ratios for two - through five-way birth defect combinations involving anophthalmia/microphthalmia to estimate whether these combinations co-occur more often than would be expected if they were independent. We report combinations observed in ≥5 cases. RESULTS: We identified 653 eligible cases with anophthalmia/microphthalmia (514 [79%] with co-occurring birth defects), and 111 birth defect combinations, of which 44 were two-way combinations, 61 were three-way combinations, six were four-way combinations and none were five-way combinations. Combinations with the largest observed-to-expected ratios were those involving central nervous system (CNS) defects, head/neck defects, and orofacial clefts. We also observed multiple combinations involving cardiovascular and musculoskeletal defects. CONCLUSION: Consistent with previous reports, we observed that a large proportion of children diagnosed with anophthalmia/microphthalmia have co-occurring birth defects. While some of these defects may be part of a sequence involving anophthalmia/microphthalmia (e.g., CNS defects), other combinations could point to as yet undescribed susceptibility patterns (e.g., musculoskeletal defects). Data from population-based birth defect registries may be useful for accelerating the discovery of previously uncharacterized malformation syndromes.

5.
Genet Med ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33173220

RESUMO

PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals.

6.
Hum Mutat ; 41(12): 2094-2104, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32935419

RESUMO

KIF1A is a molecular motor for membrane-bound cargo important to the development and survival of sensory neurons. KIF1A dysfunction has been associated with several Mendelian disorders with a spectrum of overlapping phenotypes, ranging from spastic paraplegia to intellectual disability. We present a novel pathogenic in-frame deletion in the KIF1A molecular motor domain inherited by two affected siblings from an unaffected mother with apparent germline mosaicism. We identified eight additional cases with heterozygous, pathogenic KIF1A variants ascertained from a local data lake. Our data provide evidence for the expansion of KIF1A-associated phenotypes to include hip subluxation and dystonia as well as phenotypes observed in only a single case: gelastic cataplexy, coxa valga, and double collecting system. We review the literature and suggest that KIF1A dysfunction is better understood as a single neuromuscular disorder with variable involvement of other organ systems than a set of discrete disorders converging at a single locus.

7.
Am J Med Genet A ; 182(12): 2919-2925, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32954677

RESUMO

Congenital diaphragmatic hernias (CDH) confer substantial morbidity and mortality. Genetic defects, including chromosomal anomalies, copy number variants, and sequence variants are identified in ~30% of patients with CDH. A genetic etiology is not yet found in 70% of patients, however there is a growing number of genetic syndromes and single gene disorders associated with CDH. While there have been two reported individuals with X-linked Opitz G/BBB syndrome with MID1 mutations who have CDH as an associated feature, CDH appears to be a much more prominent feature of a SPECC1L-related autosomal dominant Opitz G/BBB syndrome. Features unique to autosomal dominant Opitz G/BBB syndrome include branchial fistulae, omphalocele, and a bicornuate uterus. Here we present one new individual and five previously reported individuals with CDH found to have SPECC1L mutations. These cases provide strong evidence that SPECC1L is a bona fide CDH gene. We conclude that a SPECC1L-related Opitz G/BBB syndrome should be considered in any patient with CDH who has additional features of hypertelorism, a prominent forehead, a broad nasal bridge, anteverted nares, cleft lip/palate, branchial fistulae, omphalocele, and/or bicornuate uterus.

8.
Am J Med Genet A ; 182(11): 2581-2593, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32885608

RESUMO

Gastroschisis and omphalocele are the two most common abdominal wall birth defects, and epidemiologic characteristics and frequency of occurrence as part of a syndromic condition suggest distinct etiologies between the two defects. We assessed complex patterns of defect co-occurrence with these defects separately using the Texas Birth Defects Registry. We used co-occurring defect analysis (CODA) to compute adjusted observed-to-expected (O/E) ratios for all observed birth defect patterns. There were 2,998 non-syndromic (i.e., no documented syndrome diagnosis identified) cases with gastroschisis and 789 (26%) of these had additional co-occurring defects. There were 720 non-syndromic cases with omphalocele, and 404 (56%) had additional co-occurring defects. Among the top 30 adjusted O/E ratios for gastroschisis, most of the co-occurring defects were related to the gastrointestinal system, though cardiovascular and kidney anomalies were also present. Several of the top 30 combinations co-occurring with omphalocele appeared suggestive of OEIS (omphalocele, exstrophy of cloaca, imperforate anus, spinal defects) complex. After the exclusion of additional cases with features suggestive of OEIS in a post-hoc sensitivity analysis, the top combinations involving defects associated with OEIS (e.g., spina bifida) were no longer present. The remaining top combinations involving omphalocele included cardiovascular, gastrointestinal, and urogenital defects. In summary, we identified complex patterns of defects that co-occurred more frequently than expected with gastroschisis and omphalocele using a novel software platform. Better understanding differences in the patterns between gastroschisis and omphalocele could lead to additional etiologic insights.

9.
Am J Hum Genet ; 107(3): 544-554, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32730804

RESUMO

RNA polymerase II interacts with various other complexes and factors to ensure correct initiation, elongation, and termination of mRNA transcription. One of these proteins is SR-related CTD-associated factor 4 (SCAF4), which is important for correct usage of polyA sites for mRNA termination. Using exome sequencing and international matchmaking, we identified nine likely pathogenic germline variants in SCAF4 including two splice-site and seven truncating variants, all residing in the N-terminal two thirds of the protein. Eight of these variants occurred de novo, and one was inherited. Affected individuals demonstrated a variable neurodevelopmental disorder characterized by mild intellectual disability, seizures, behavioral abnormalities, and various skeletal and structural anomalies. Paired-end RNA sequencing on blood lymphocytes of SCAF4-deficient individuals revealed a broad deregulation of more than 9,000 genes and significant differential splicing of more than 2,900 genes, indicating an important role of SCAF4 in mRNA processing. Knockdown of the SCAF4 ortholog CG4266 in the model organism Drosophila melanogaster resulted in impaired locomotor function, learning, and short-term memory. Furthermore, we observed an increased number of active zones in larval neuromuscular junctions, representing large glutamatergic synapses. These observations indicate a role of CG4266 in nervous system development and function and support the implication of SCAF4 in neurodevelopmental phenotypes. In summary, our data show that heterozygous, likely gene-disrupting variants in SCAF4 are causative for a variable neurodevelopmental disorder associated with impaired mRNA processing.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Convulsões/genética , Fatores de Processamento de Serina-Arginina/genética , Animais , Criança , Drosophila melanogaster/genética , Feminino , Técnicas de Silenciamento de Genes , Variação Genética/genética , Heterozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Locomoção/genética , Masculino , Mutação/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Convulsões/fisiopatologia , Sequenciamento Completo do Exoma
10.
J Med Genet ; 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518176

RESUMO

BACKGROUND: The nucleotide binding protein-like (NUBPL) gene was first reported as a cause of mitochondrial complex I deficiency (MIM 613621, 618242) in 2010. To date, only eight patients have been reported with this mitochondrial disorder. Five other patients were recently reported to have NUBPL disease but their clinical picture was different from the first eight patients. Here, we report clinical and genetic findings in five additional patients (four families). METHODS: Whole exome sequencing was used to identify patients with compound heterozygous NUBPL variants. Functional studies included RNA-Seq transcript analyses, missense variant biochemical analyses in a yeast model (Yarrowia lipolytica) and mitochondrial respiration experiments on patient fibroblasts. RESULTS: The previously reported c.815-27T>C branch-site mutation was found in all four families. In prior patients, c.166G>A [p.G56R] was always found in cis with c.815-27T>C, but only two of four families had both variants. The second variant found in trans with c.815-27T>C in each family was: c.311T>C [p.L104P] in three patients, c.693+1G>A in one patient and c.545T>C [p.V182A] in one patient. Complex I function in the yeast model was impacted by p.L104P but not p.V182A. Clinical features include onset of neurological symptoms at 3-18 months, global developmental delay, cerebellar dysfunction (including ataxia, dysarthria, nystagmus and tremor) and spasticity. Brain MRI showed cerebellar atrophy. Mitochondrial function studies on patient fibroblasts showed significantly reduced spare respiratory capacity. CONCLUSION: We report on five new patients with NUBPL disease, adding to the number and phenotypic variability of patients diagnosed worldwide, and review prior reported patients with pathogenic NUBPL variants.

11.
Am J Med Genet A ; 182(8): 1960-1966, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449285

RESUMO

The mitochondrial aconitase gene (ACO2) encodes an enzyme that catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid cycle. Biallelic variants in ACO2 are purported to cause two distinct disorders: infantile cerebellar-retinal degeneration (ICRD) which is characterized by CNS abnormalities, neurodevelopmental phenotypes, optic atrophy and retinal degeneration; and optic atrophy 9 (OPA9), characterized by isolated ophthalmologic phenotypes including optic atrophy and low vision. However, some doubt remains as to whether biallelic ACO2 variants can cause isolated ophthalmologic phenotypes. A review of the literature revealed five individuals from three families who carry biallelic ACO2 variants whose phenotypes are consistent with OPA9. Here, we describe a brother and sister with OPA9 who are compound heterozygous for novel missense variants in ACO2; c.[487G>T];[1894G>A], p.[(Val163Leu)];[(Val632Met)]. A review of pathogenic ACO2 variants revealed that those associated with OPA9 are distinct from those associated with ICRD. Missense variants associated with either OPA9 or ICRD do not cluster in distinct ACO2 domains, making it difficult to predict the severity of a variant based on position alone. We conclude that biallelic variants in ACO2 can cause the milder OPA9 phenotype, and that the OPA9-related ACO2 variants identified to date are distinct from those that cause ICRD.

13.
Hum Mutat ; 41(5): 921-925, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31999386

RESUMO

The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B loss-of-function variants in exome sequencing data from previously published cohorts of individuals with neurodevelopmental disorders. We subsequently identified seven additional individuals with heterozygous deletions, stop-gain, or de novo missense variants affecting BAZ2B. All of these individuals have developmental delay (DD), intellectual disability (ID), and/or ASD. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal features include DD, ID, and ASD.

14.
Am J Med Genet A ; 182(4): 652-658, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31883306

RESUMO

The non-POU domain containing, octamer-binding gene, NONO, is located on chromosome Xq13.1 and encodes a member of a small family of RNA and DNA binding proteins that perform a variety of tasks involved in RNA synthesis, transcriptional regulation and DNA repair. Hemizygous loss-of-function variants in NONO have been shown to cause mental retardation, X-linked, syndromic 34 in males. Features of this disorder can include a range of neurodevelopmental phenotypes, left ventricular noncompaction (LVNC), congenital heart defects, and CNS anomalies. To date only eight cases have been described in the literature. Here we report two unrelated patients and a miscarried fetus with loss-of-function variants in NONO. Their phenotypes, and a review of previously reported cases, demonstrate that hemizygous loss-of-function variants in NONO cause a recognizable genetic syndrome. The cardinal features of this condition include developmental delay, intellectual disability, hypotonia, macrocephaly, structural abnormalities affecting the corpus callosum and/or cerebellum, LVNC, congenital heart defects, and gastrointestinal/feeding issues. This syndrome also carries an increased risk for strabismus and cryptorchidism and is associated with dysmorphic features that include an elongated face, up/down-slanted palpebral fissures, frontal bossing, and malar hypoplasia.

15.
J Pediatr Genet ; 8(4): 244-251, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31687266

RESUMO

Autosomal recessive variants in the adenosine deaminase, tRNA specific 3 ( ADAT3 ) gene cause a syndromic form of intellectual disability due to a loss of ADAT3 function. This disorder is characterized by developmental delay, intellectual disability, speech delay, abnormal brain structure, strabismus, microcephaly, and failure to thrive. A small subset of individuals with ADAT3 deficiency have other structural birth defects including atrial septal defect, patent ductus arteriosus, hypospadias, cryptorchidism, and micropenis. Here, we report a sibling pair with novel compound heterozygous missense variants that affect a conserved amino acid in the deaminase domain of ADAT3. These siblings have many of the features characteristic of this syndrome, including, intellectual disability, hypotonia, esotropia, failure to thrive, and microcephaly. Both had gastroesophageal reflux disease (GERD), feeding problems, and aspiration requiring thickening of feeds. Although they have no words, their communication abilities progressed rapidly when they began to use augmentative and alternative communication (AAC) devices. One of these siblings was born with an anterior congenital diaphragmatic hernia, which has not been reported previously in association with ADAT3 deficiency. We conclude that individuals with ADAT3 deficiency should be monitored for GERD, feeding problems, and aspiration in infancy. They may also benefit from the use of AAC devices and individualized educational programs that take into account their capacity for nonverbal language development. Additional studies in humans or animal models will be needed to determine if ADAT3 deficiency predisposes to the development of structural birth defects.

16.
Mol Autism ; 10: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649809

RESUMO

Background: PHF21A has been associated with intellectual disability and craniofacial anomalies based on its deletion in the Potocki-Shaffer syndrome region at 11p11.2 and its disruption in three patients with balanced translocations. In addition, three patients with de novo truncating mutations in PHF21A were reported recently. Here, we analyze genomic data from seven unrelated individuals with mutations in PHF21A and provide detailed clinical descriptions, further expanding the phenotype associated with PHF21A haploinsufficiency. Methods: Diagnostic trio whole exome sequencing, Sanger sequencing, use of GeneMatcher, targeted gene panel sequencing, and MiSeq sequencing techniques were used to identify and confirm variants. RT-qPCR was used to measure the normal expression pattern of PHF21A in multiple human tissues including 13 different brain tissues. Protein-DNA modeling was performed to substantiate the pathogenicity of the missense mutation. Results: We have identified seven heterozygous coding mutations, among which six are de novo (not maternal in one). Mutations include four frameshifts, one nonsense mutation in two patients, and one heterozygous missense mutation in the AT Hook domain, predicted to be deleterious and likely to cause loss of PHF21A function. We also found a new C-terminal domain composed of an intrinsically disordered region. This domain is truncated in six patients and thus likely to play an important role in the function of PHF21A, suggesting that haploinsufficiency is the likely underlying mechanism in the phenotype of seven patients. Our results extend the phenotypic spectrum of PHF21A mutations by adding autism spectrum disorder, epilepsy, hypotonia, and neurobehavioral problems. Furthermore, PHF21A is highly expressed in the human fetal brain, which is consistent with the neurodevelopmental phenotype. Conclusion: Deleterious nonsense, frameshift, and missense mutations disrupting the AT Hook domain and/or an intrinsically disordered region in PHF21A were found to be associated with autism spectrum disorder, epilepsy, hypotonia, neurobehavioral problems, tapering fingers, clinodactyly, and syndactyly, in addition to intellectual disability and craniofacial anomalies. This suggests that PHF21A is involved in autism spectrum disorder and intellectual disability, and its haploinsufficiency causes a diverse neurological phenotype.


Assuntos
Transtorno Autístico/genética , Comportamento , Anormalidades Craniofaciais/genética , Epilepsia/genética , Histona Desacetilases/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Adolescente , Sequência de Aminoácidos , Transtorno Autístico/complicações , Encéfalo/metabolismo , Criança , Pré-Escolar , Anormalidades Craniofaciais/complicações , Epilepsia/complicações , Feminino , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/complicações , Masculino , Hipotonia Muscular/complicações , Mutação/genética , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome
17.
Sci Adv ; 5(9): eaax2166, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31579823

RESUMO

RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.


Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Variação Genética , Neurogênese/genética , Proteínas de Ligação a RNA/genética , Transmissão Sináptica/genética , Adolescente , Animais , Transtorno Autístico/psicologia , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Linhagem , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Sinapses/genética , Sinapses/metabolismo , Adulto Jovem
18.
Am J Med Genet A ; 179(12): 2459-2468, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520464

RESUMO

Hartnup disease is an autosomal recessive condition characterized by neutral aminoaciduria and behavioral problems. It is caused by a loss of B0 AT1, a neutral amino acid transporter in the kidney and intestine. CLTRN encodes the protein collectrin that functions in the transportation and activation of B0 AT1 in the renal apical brush bordered epithelium. Collectrin deficient mice have severe aminoaciduria. However, the phenotype associated with collectrin deficiency in humans has not been reported. Here we report two patients, an 11-year-old male who is hemizygous for a small, interstitial deletion on Xp22.2 that encompasses CLTRN and a 22-year-old male with a deletion spanning exons 1 to 3 of CLTRN. Both of them present with neuropsychiatric phenotypes including autistic features, anxiety, depression, compulsions, and motor tics, as well as neutral aminoaciduria leading to a clinical diagnosis of Hartnup disease and treatment with niacin supplementation. Plasma amino acids were normal in both patients. One patient had low 5-hydroxyindoleacetic acid levels, a serotoninergic metabolite. We explored the expression of collectrin in the murine brain and found it to be particularly abundant in the hippocampus, brainstem, and cerebellum. We propose that collectrin deficiency in humans can be associated with aminoaciduria and a clinical picture similar to that seen in Hartnup disease. Further studies are needed to explore the role of collectrin deficiency in the neurological phenotypes.


Assuntos
Deleção de Genes , Doença de Hartnup/diagnóstico , Doença de Hartnup/genética , Mutação com Perda de Função , Glicoproteínas de Membrana/genética , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Fenótipo , Alelos , Substituição de Aminoácidos , Animais , Criança , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Adulto Jovem
19.
Birth Defects Res ; 111(18): 1356-1364, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313535

RESUMO

BACKGROUND: Few studies have systematically evaluated birth defect co-occurrence patterns, perhaps, in part, due to the lack of software designed to implement large-scale, complex analytic methods. METHODS: We created an R-based platform, "co-occurring defect analysis" (CODA), designed to implement analyses of birth defect co-occurrence patterns in birth defect registries. CODA uses an established algorithm for calculating the observed-to-expected ratio of a given birth defect combination, accounting for the known tendency of birth defects to co-occur nonspecifically. To demonstrate CODA's feasibility, we evaluated the computational time needed to assess 2- to 5-way combinations of major birth defects in the Texas Birth Defects Registry (TBDR) (1999-2014). We report on two examples of pairwise patterns, defects co-occurring with trisomy 21 or with non-syndromic spina bifida, to demonstrate proof-of-concept. RESULTS: We evaluated combinations of 175 major birth defects among 206,784 infants in the TBDR. CODA performed efficiently in the data set, analyzing 1.5 million 5-way combinations in 18 hr. As anticipated, we identified large observed-to-expected ratios for the birth defects that co-occur with trisomy 21 or spina bifida. CONCLUSIONS: CODA is available for application to birth defect data sets and can be used to better understand co-occurrence patterns. Co-occurrence patterns elucidated by using CODA may be helpful for identifying new birth defect associations and may provide etiological insights regarding potentially shared pathogenic mechanisms. CODA may also have wider applications, such as assessing patterns of additional types of co-occurrence patterns in other large data sets (e.g., medical records).


Assuntos
Comorbidade/tendências , Anormalidades Congênitas/classificação , Anormalidades Congênitas/etiologia , Algoritmos , Anormalidades Congênitas/epidemiologia , Humanos , Lactente , Recém-Nascido , Modelos Estatísticos , Sistema de Registros , Software , Texas
20.
Am J Med Genet A ; 179(7): 1376-1382, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31069960

RESUMO

The myelin regulatory factor gene (MYRF) encodes a transcription factor that is widely expressed. There is increasing evidence that heterozygous loss-of-function variants in MYRF can lead to abnormal development of the heart, genitourinary tract, diaphragm, and lungs. Here, we searched a clinical database containing the results of 12,000 exome sequencing studies. We identified three previously unreported males with putatively deleterious variants in MYRF: one with a point mutation predicted to affect splicing and two with frameshift variants. In all cases where parental DNA was available, these variants were found to have arisen de novo. The phenotypes identified in these subjects included a variety of congenital heart defects (CHD) (hypoplastic left heart syndrome, scimitar syndrome, septal defects, and valvular anomalies), genitourinary anomalies (ambiguous genitalia, hypospadias, and cryptorchidism), congenital diaphragmatic hernia, and pulmonary hypoplasia. The phenotypes seen in our subjects overlap those described in individuals diagnosed with PAGOD syndrome [MIM# 202660], a clinically defined syndrome characterized by pulmonary artery and lung hypoplasia, agonadism, omphalocele, and diaphragmatic defects that can also be associated with hypoplastic left heart and scimitar syndrome. These cases provide additional evidence that haploinsufficiency of MYRF causes a genetic syndrome whose cardinal features include CHD, urogenital anomalies, congenital diaphragmatic hernia, and pulmonary hypoplasia. We also conclude that consideration should be given to screening individuals with PAGOD for pathogenic variants in MYRF, and that individuals with MYRF deficiency who survive the neonatal period should be monitored closely for developmental delay and intellectual disability.


Assuntos
Haploinsuficiência , Proteínas de Membrana/genética , Fenótipo , Fatores de Transcrição/genética , Sequência de Aminoácidos , Feminino , Humanos , Recém-Nascido , Masculino , Proteínas de Membrana/química , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA