Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(14): 5665-5674, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31825547

RESUMO

Solid electrolyte materials are crucial for the development of high-energy-density all-solid-state batteries (ASSB) using a nonflammable electrolyte. In order to retain a low lithium-ion transfer resistance, fast lithium ion conducting solid electrolytes are required. We report on the novel superionic conductor Li9 AlP4 which is easily synthesised from the elements via ball-milling and subsequent annealing at moderate temperatures and which is characterized by single-crystal and powder X-ray diffraction. This representative of the novel compound class of lithium phosphidoaluminates has, as an undoped material, a remarkable fast ionic conductivity of 3 mS cm-1 and a low activation energy of 29 kJ mol-1 as determined by impedance spectroscopy. Temperature-dependent 7 Li NMR spectroscopy supports the fast lithium motion. In addition, Li9 AlP4 combines a very high lithium content with a very low theoretical density of 1.703 g cm-3 . The distribution of the Li atoms over the diverse crystallographic positions between the [AlP4 ]9- tetrahedra is analyzed by means of DFT calculations.

2.
J Am Chem Soc ; 141(36): 14200-14209, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31403777

RESUMO

Solid electrolytes with superionic conductivity are required as a main component for all-solid-state batteries. Here we present a novel solid electrolyte with three-dimensional conducting pathways based on "lithium-rich" phosphidosilicates with ionic conductivity of σ > 10-3 S cm-1 at room temperature and activation energy of 30-32 kJ mol-1 expanding the recently introduced family of lithium phosphidotetrelates. Aiming toward higher lithium ion conductivities, systematic investigations of lithium phosphidosilicates gave access to the so far lithium-richest compound within this class of materials. The crystalline material (space group Fm3m), which shows reversible thermal phase transitions, can be readily obtained by ball mill synthesis from the elements followed by moderate thermal treatment of the mixture. Lithium diffusion pathways via both tetrahedral and octahedral voids are analyzed by temperature-dependent powder neutron diffraction measurements in combination with maximum entropy method and DFT calculations. Moreover, the lithium ion mobility structurally indicated by a disordered Li/Si occupancy in the tetrahedral voids plus partially filled octahedral voids is studied by temperature-dependent impedance and 7Li NMR spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...