Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(44): 41281-41288, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31603302

RESUMO

Cell designs that integrate membrane-electrode assemblies (MEAs) with highly selective catalysts are a promising route to reduce ohmic losses and achieve high energy efficiency in CO2 reduction at industrially relevant current densities. In this work, porous silver filtration membranes are demonstrated as simple and efficient gas-diffusion electrodes for CO2 reduction to CO at high current densities in an MEA-type device. A partial current density for CO of up to ca. 200 mA cm-2 was achieved at a cell voltage of ca. 3.3 V, in tandem with minimal H2 production. However, the analysis of cathodic and anodic outlet streams revealed that CO2 cross-over across the anion-exchange membranes, mostly in the form of CO32- but partially as HCOO- generated over the cathode, actually exceeds the amount of CO2 converted to the target product, resulting in a poor utilization of the reactant and in the early onset of mass transfer limitations. In addition, CO2 cross-over leads to a nonstoichiometric decrease of the outlet flow rate from the cathodic compartment. This effect can lead to a substantial overestimation of catalytic performance if the inlet flow rate of CO2 is used as reference for calculating partial current densities and Faradaic efficiencies. The results of this work highlight the importance of carrying out a carbon balance, in addition to traditional measurements of activity and selectivity, to adequately assess the performance of CO2 reduction devices at high current densities, and inform future efforts aimed at mitigating membrane cross-over in MEA-type electrolyzers for CO2 reduction.

2.
Chem Rev ; 119(12): 7610-7672, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31117420

RESUMO

To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

3.
Angew Chem Int Ed Engl ; 58(12): 3774-3778, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30673156

RESUMO

An understanding of the influence of structural surface features on electrocatalytic reactions is vital for the development of efficient nanostructured catalysts. Gold is the most active and selective known electrocatalyst for the reduction of CO2 to CO in aqueous electrolytes. Numerous strategies have been proposed to improve its intrinsic activity. Nonetheless, the atomistic knowledge of the nature of the active sites remains elusive. We systematically investigated the structure sensitivity of Au single crystals for electrocatalytic CO2 reduction. Reaction kinetics for the formation of CO are strongly dependent on the surface structure. Under-coordinated sites, such as those present in Au(110) and at the steps of Au(211), show at least 20-fold higher activity than more coordinated configurations (for example, Au(100)). By selectively poisoning under-coordinated sites with Pb, we have confirmed that these are the active sites for CO2 reduction.

4.
Chem Soc Rev ; 46(7): 1933-1954, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28246670

RESUMO

Photoelectrochemical (PEC) solar-fuel conversion is a promising approach to provide clean and storable fuel (e.g., hydrogen and methanol) directly from sunlight, water and CO2. However, major challenges still have to be overcome before commercialization can be achieved. One of the largest barriers to overcome is to achieve a stable PEC reaction in either strongly basic or acidic electrolytes without degradation of the semiconductor photoelectrodes. In this work, we discuss fundamental aspects of protection strategies for achieving stable solid/liquid interfaces. We then analyse the charge transfer mechanism through the protection layers for both photoanodes and photocathodes. In addition, we review protection layer approaches and their stabilities for a wide variety of experimental photoelectrodes for water reduction. Finally, we discuss key aspects which should be addressed in continued work on realizing stable and practical PEC solar water splitting systems.

5.
Nat Commun ; 7: 11474, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142885

RESUMO

Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.

6.
Science ; 350(6264): 1030-1, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612935
7.
J Phys Chem Lett ; 6(6): 951-7, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-26262851

RESUMO

The past 10 years have seen great advances in the field of electrochemical hydrogen evolution. In particular, several new nonprecious metal electrocatalysts, for example, the MoS2 or the Ni2P family of materials, have emerged as contenders for electrochemical hydrogen evolution under harsh acidic conditions offering nearly platinum-like catalytic performance. The developments have been particularly fast in the last 5 years, and the present Perspective highlights key developments and discusses them, along with hydrogen evolution in general, in the context of the global energy problem.

8.
J Phys Chem Lett ; 6(9): 1679-83, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26263333

RESUMO

The electrocatalytic performance for hydrogen evolution has been evaluated for radial-junction n(+)p-Si microwire (MW) arrays with Pt or cobalt phosphide, CoP, nanoparticulate catalysts in contact with 0.50 M H2SO4(aq). The CoP-coated (2.0 mg cm(-2)) n(+)p-Si MW photocathodes were stable for over 12 h of continuous operation and produced an open-circuit photovoltage (Voc) of 0.48 V, a light-limited photocurrent density (Jph) of 17 mA cm(-2), a fill factor (ff) of 0.24, and an ideal regenerative cell efficiency (ηIRC) of 1.9% under simulated 1 Sun illumination. Pt-coated (0.5 mg cm(-2)) n(+)p-Si MW-array photocathodes produced Voc = 0.44 V, Jph = 14 mA cm(-2), ff = 0.46, and η = 2.9% under identical conditions. Thus, the MW geometry allows the fabrication of photocathodes entirely comprised of earth-abundant materials that exhibit performance comparable to that of devices that contain Pt.

9.
Angew Chem Int Ed Engl ; 53(17): 4399-403, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24677660

RESUMO

Abundant and toxic hydrogen sulfide (H2 S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H2 and elemental sulfur can be simultaneously extracted through a H2 S splitting reaction. Herein a photochemical-chemical loop linked by redox couples such as Fe(2+) /Fe(3+) and I(-) /I3 (-) for photoelectrochemical H2 production and H2 S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2 S was successfully split into elemental sulfur and H2 with high stability and selectivity under simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2 S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction.

10.
Phys Chem Chem Phys ; 16(3): 1271-5, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24297250

RESUMO

Functionalization of transition metal oxides using metallic nanoparticles is an interesting route towards efficient photoelectrochemical hydrogen production via water splitting. Although an enhanced photocurrent in photoanodes upon functionalization with metallic nanostructures has been observed in several studies, to the best of our knowledge no measurements of the Faradaic efficiency (FE) of the oxygen evolution reaction (OER) have been reported for such systems. This work characterizes the FE on a model system consisting of ultra-thin films of hematite (Fe2O3) sensitized with Ti/Au nanodisks. Compared to bare hematite references, sensitized samples showed significantly enhanced photocurrents as well as O2 evolution. Experimental evidence suggests that the observed enhancement was not due to photocatalytic activity of the nanodisks. The FE has been determined to be 100%, within the experimental errors, for both sensitized and reference samples. Also, this work demonstrates that the sensitized samples were stable for at least 16 hours photocurrent testing. The concepts shown in this work are generally applicable to any situation in which a semiconductor has its water splitting performance enhanced by metallic nanostructures.

11.
J Phys Chem Lett ; 5(11): 1948-52, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26273878

RESUMO

Sputter deposition of Ir/IrOx on p(+)-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38.6 mW/cm(2) simulated sunlight irradiation (λ > 635 nm, AM 1.5G) and measurements with quartz crystal microbalances. Films exceeding a thickness of 4 nm were shown to be highly active though metastable due to an amorphous character. By contrast, 2 nm IrOx films were stable, enabling OER at a current density of 1 mA/cm(2) at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm(2) (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p(+)-n-Si structures not only provide the necessary overpotential for OER at realistic device current, but also harvest ∼100 mV of free energy (voltage) which makes them among the best-performing Si-based photoanodes in low-pH media.

12.
J Phys Chem Lett ; 5(20): 3456-61, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26278593

RESUMO

Sputter deposition of 50 nm thick NiO films on p(+)-n-Si and subsequent treatment in an Fe-containing electrolyte yielded highly transparent photoanodes capable of water oxidation (OER) in alkaline media (1 M KOH) with high efficiency and stability. The Fe treatment of NiO thin films enabled Si-based photoanode assemblies to obtain a current density of 10 mA/cm(2) (requirement for >10% efficient devices) at 1.15 V versus RHE (reversible hydrogen electrode) under red-light (38.6 mW/cm(2)) irradiation. Thus, the photoanodes were harvesting ∼80 mV of free energy (voltage), which places them among the best-performing Si-based photoanodes in alkaline media. The stability was proven by chronoamperometry at 1.3 V versus RHE for 300 h. Furthermore, measurements with electrochemical quartz crystal microbalances coupled with ICP-MS showed minor corrosion under dark operation. Extrapolation of the corrosion rate showed stability for more than 2000 days of continuous operation. Therefore, protection by Fe-treated NiO films is a promising strategy to achieve highly efficient and stable photoanodes.

13.
Phys Chem Chem Phys ; 15(46): 20000-4, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24166362

RESUMO

A new MoS2 protected n(+)p-junction Si photocathode for the renewable H2 evolution is presented here. MoS2 acts as both a protective and an electrocatalytic layer, allowing H2 evolution at 0 V vs. RHE for more than 5 days. Using a MoSx surface layer decreases the overpotential for H2 evolution by 200 mV.

15.
J Am Chem Soc ; 135(3): 1057-64, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23289745

RESUMO

Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO(2) layer on top of a thin Ti metal layer may be used to protect an n(+)p Si photocathode during photocatalytic H(2) evolution. Although TiO(2) is a semiconductor, we show that it behaves like a metallic conductor would under photocathodic H(2) evolution conditions. This behavior is due to the fortunate alignment of the TiO(2) conduction band with respect to the hydrogen evolution potential, which allows it to conduct electrons from the Si while simultaneously protecting the Si from surface passivation. By using a Pt catalyst the electrode achieves an H(2) evolution onset of 520 mV vs NHE and a Tafel slope of 30 mV when illuminated by the red part (λ > 635 nm) of the AM 1.5 spectrum. The saturation photocurrent (H(2) evolution) was also significantly enhanced by the antireflective properties of the TiO(2) layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe(2+)/Fe(3+) redox couple was used to help elucidate details of the band diagram.


Assuntos
Fontes de Energia Elétrica , Hidrogênio/química , Titânio/química , Condutividade Elétrica , Processos Fotoquímicos , Silício/química
16.
Angew Chem Int Ed Engl ; 51(36): 9128-31, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22887979

RESUMO

A low-cost substitute: A titanium protection layer on silicon made it possible to use silicon under highly oxidizing conditions without oxidation of the silicon. Molybdenum sulfide was electrodeposited on the Ti-protected n(+)p-silicon electrode. This electrode was applied as a photocathode for water splitting and showed a greatly enhanced efficiency.

17.
ACS Nano ; 5(5): 3483-92, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21488687

RESUMO

In this work we present the synthesis of a new type of nitrogen-doped tantalate, Sr(2)Ta(2)O(7-x)N(x), which exhibited significantly increased visible light absorption and improved photocatalytic hydrogen production by 87% under solar irradiation, compared with its undoped counterpart Sr(2)Ta(2)O(7). The photocatalyst also exhibited a strong capability in photoinduced reduction of exfoliated graphene oxide (GO) to graphene sheets. By using graphene as a support for a Pt cocatalyst, a new type of composite containing graphene-Pt and Sr(2)Ta(2)O(7-x)N(x) was designed, which demonstrated an additional ∼80% increase in hydrogen production and an quantum efficiency of 6.45% (∼177% increase from pristine undoped Sr(2)Ta(2)O(7)) due to the efficient charge carrier separation on the photocatalyst. This work suggests that graphene can play an important role as an electron transfer highway, which facilitates the charge carrier collection onto Pt cocatalysts. The method can thus be considered as an excellent strategy to increase photocatalytic hydrogen production in addition to a commonly applied doping method.


Assuntos
Grafite/química , Grafite/efeitos da radiação , Hidrogênio/química , Nanoestruturas/química , Nitrogênio/química , Nitrogênio/efeitos da radiação , Platina/química , Catálise , Hidrogênio/isolamento & purificação , Luz , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
18.
ACS Nano ; 2(7): 1487-91, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19206319

RESUMO

Graphene oxide suspended in ethanol undergoes reduction as it accepts electrons from UV-irradiated TiO(2) suspensions. The reduction is accompanied by changes in the absorption of the graphene oxide, as the color of the suspension shifts from brown to black. The direct interaction between TiO(2) particles and graphene sheets hinders the collapse of exfoliated sheets of graphene. Solid films cast on a borosilicate glass gap separated by gold-sputtered terminations show an order of magnitude decrease in lateral resistance following reduction with the TiO(2) photocatalyst. The photocatalytic methodology not only provides an on-demand UV-assisted reduction technique but also opens up new ways to obtain photoactive graphene-semiconductor composites.


Assuntos
Cristalização/métodos , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Titânio/química , Catálise , Grafite/efeitos da radiação , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Oxirredução/efeitos da radiação , Óxidos/química , Óxidos/efeitos da radiação , Tamanho da Partícula , Fotoquímica/métodos , Propriedades de Superfície/efeitos da radiação , Titânio/efeitos da radiação , Raios Ultravioleta
19.
Langmuir ; 23(10): 5471-6, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17407336

RESUMO

A simple approach to monitor the H(+) activity of a proton-exchange membrane (Nafion) is introduced by incorporating methylene blue as an indicator dye. The dye exhibits characteristics absorption maxima at 665 and 745 nm corresponding to its singly and doubly protonated forms, respectively. The apparent proton activity of Nafion as monitored from the appearance of doubly protonated methylene blue absorption is equivalent to 1.2 M H2SO4. By monitoring the spectral changes associated with the protonation equilibrium of the dye, it is possible to probe the rate and the exchangeable proton sites within the Nafion film. For the Nafion 117 film, we estimate the total exchangeable proton sites to be 2.5 x 10(19) sites/cm(2) or 4.2 x 10(-5) mols/cm(2). The equilibrium constant for the H(+)/Na(+) exchange for the bound sites is determined to be 2.2. The feasibility of methylene blue as a probe to monitor proton activity during the operation of a direct methanol fuel cell has been explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA