Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4722, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624253

RESUMO

The genetic architecture of sporadic congenital heart disease (CHD) is characterized by enrichment in damaging de novo variants in chromatin-modifying genes. To test the hypothesis that gene pathways contributing to de novo forms of CHD are distinct from those for recessive forms, we analyze 2391 whole-exome trios from the Pediatric Cardiac Genomics Consortium. We deploy a permutation-based gene-burden analysis to identify damaging recessive and compound heterozygous genotypes and disease genes, controlling for confounding effects, such as background mutation rate and ancestry. Cilia-related genes are significantly enriched for damaging rare recessive genotypes, but comparatively depleted for de novo variants. The opposite trend is observed for chromatin-modifying genes. Other cardiac developmental gene classes have less stratification by mode of inheritance than cilia and chromatin-modifying gene classes. Our analyses reveal dominant and recessive CHD are associated with distinct gene functions, with cilia-related genes providing a reservoir of rare segregating variation leading to CHD.

2.
Circ Res ; 125(9): 834-846, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31495264

RESUMO

RATIONALE: Pathogenic variations in the lamin gene (LMNA) cause familial dilated cardiomyopathy (DCM). LMNA insufficiency caused by LMNA pathogenic variants is believed to be the basic mechanism underpinning LMNA-related DCM. OBJECTIVE: To assess whether silencing of cardiac Lmna causes DCM and investigate the role of Yin Yang 1 (Yy1) in suppressing Lmna DCM. METHODS AND RESULTS: We developed a Lmna DCM mouse model induced by cardiac-specific Lmna short hairpin RNA. Silencing of cardiac Lmna induced DCM with associated cardiac fibrosis and inflammation. We demonstrated that upregulation of Yy1 suppressed Lmna DCM and cardiac fibrosis by inducing Bmp7 expression and preventing upregulation of Ctgf. Knockdown of upregulated Bmp7 attenuated the suppressive effect of Yy1 on DCM and cardiac fibrosis. However, upregulation of Bmp7 alone was not sufficient to suppress DCM and cardiac fibrosis. Importantly, upregulation of Bmp7 together with Ctgf silencing significantly suppressed DCM and cardiac fibrosis. Mechanistically, upregulation of Yy1 regulated Bmp7 and Ctgf reporter activities and modulated Bmp7 and Ctgf gene expression in cardiomyocytes. Downregulation of Ctgf inhibited TGF-ß (transforming growth factor-ß)/Smad signaling in DCM hearts. Regulation of both Bmp7 and Ctgf further suppressed TGFß/Smad signaling. In addition, co-modulation of Bmp7 and Ctgf reduced CD3+ T cell numbers in DCM hearts. CONCLUSIONS: Our findings demonstrate that upregulation of Yy1 or co-modulation of Bmp7 and Ctgf offer novel therapeutic strategies for the treatment of DCM caused by LMNA insufficiency.

3.
Mol Genet Genomic Med ; 7(11): e940, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31482667

RESUMO

BACKGROUND: Individuals with hypertrophic cardiomyopathy (HCM), even when asymptomatic, are at-risk for sudden cardiac death and stroke from arrhythmias, making it imperative to identify individuals affected by this familial disorder. Consensus guidelines recommend that first-degree relatives (FDRs) of a person with HCM undergo serial cardiovascular evaluations. METHODS: We determined the uptake of family screening in patients with HCM and developed an online video intervention to facilitate family communication and screening. Family screening and genetic testing data were collected through a prospective quality improvement initiative, a standardized clinical assessment and management plan (SCAMP), utilized in an established cardiovascular genetics clinic. Patients were prescribed an online video if screening of their FDRs was incomplete and a pilot study on video utilization and family communication was conducted. RESULTS: Two-hundred and sixteen probands with HCM were enrolled in SCAMP Phase I and 190 were enrolled in SCAMP Phase II. In both phases, probands reported that 51% of FDRs had been screened (382/749 in Phase I, 258/504 in Phase II). Twenty patients participated in a pilot study on video utilization and family communication. Nine participants reported watching the video and six participants reported sharing the video with relatives; however only one participant reported sharing the video with relatives who were not yet aware of the diagnosis of HCM in the family. CONCLUSION: Despite care in a specialized cardiovascular genetics clinic, approximately one half of FDRs of patients with HCM remained unscreened. Online interventions and videos may serve as supplemental tools for patients communicating genetic risk information to relatives.

4.
Nat Commun ; 10(1): 3043, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292440

RESUMO

There are established associations between advanced paternal age and offspring risk for psychiatric and developmental disorders. These are commonly attributed to genetic mutations, especially de novo single nucleotide variants (dnSNVs), that accumulate with increasing paternal age. However, the actual magnitude of risk from such mutations in the male germline is unknown. Quantifying this risk would clarify the clinical significance of delayed paternity. Using parent-child trio whole-exome-sequencing data, we estimate the relationship between paternal-age-related dnSNVs and risk for five disorders: autism spectrum disorder (ASD), congenital heart disease, neurodevelopmental disorders with epilepsy, intellectual disability and schizophrenia (SCZ). Using Danish registry data, we investigate whether epidemiologic associations between each disorder and older fatherhood are consistent with the estimated role of dnSNVs. We find that paternal-age-related dnSNVs confer a small amount of risk for these disorders. For ASD and SCZ, epidemiologic associations with delayed paternity reflect factors that may not increase with age.


Assuntos
Testes Genéticos , Modelos Genéticos , Idade Paterna , Adulto , Fatores Etários , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Criança , Dinamarca/epidemiologia , Epilepsia/epidemiologia , Epilepsia/genética , Feminino , Cardiopatias Congênitas/epidemiologia , Cardiopatias Congênitas/genética , Humanos , Incidência , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Prevalência , Sistema de Registros/estatística & dados numéricos , Medição de Risco/métodos , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Sequenciamento Completo do Exoma
5.
Cereb Cortex ; 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31216004

RESUMO

Neurodevelopmental abnormalities are the most common noncardiac complications in patients with congenital heart disease (CHD). Prenatal brain abnormalities may be due to reduced oxygenation, genetic factors, or less commonly, teratogens. Understanding the contribution of these factors is essential to improve outcomes. Because primary sulcal patterns are prenatally determined and under strong genetic control, we hypothesized that they are influenced by genetic variants in CHD. In this study, we reveal significant alterations in sulcal patterns among subjects with single ventricle CHD (n = 115, 14.7 ± 2.9 years [mean ± standard deviation]) compared with controls (n = 45, 15.5 ± 2.4 years) using a graph-based pattern-analysis technique. Among patients with CHD, the left hemisphere demonstrated decreased sulcal pattern similarity to controls in the left temporal and parietal lobes, as well as the bilateral frontal lobes. Temporal and parietal lobes demonstrated an abnormally asymmetric left-right pattern of sulcal basin area in CHD subjects. Sulcal pattern similarity to control was positively correlated with working memory, processing speed, and executive function. Exome analysis identified damaging de novo variants only in CHD subjects with more atypical sulcal patterns. Together, these findings suggest that sulcal pattern analysis may be useful in characterizing genetically influenced, atypical early brain development and neurodevelopmental risk in subjects with CHD.

6.
Proc Natl Acad Sci U S A ; 116(28): 14049-14054, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235600

RESUMO

Genomic analyses of patients with congenital heart disease (CHD) have identified significant contribution from mutations affecting cilia genes and chromatin remodeling genes; however, the mechanism(s) connecting chromatin remodeling to CHD is unknown. Histone H2B monoubiquitination (H2Bub1) is catalyzed by the RNF20 complex consisting of RNF20, RNF40, and UBE2B. Here, we show significant enrichment of loss-of-function mutations affecting H2Bub1 in CHD patients (enrichment 6.01, P = 1.67 × 10-03), some of whom had abnormal laterality associated with ciliary dysfunction. In Xenopus, knockdown of rnf20 and rnf40 results in abnormal heart looping, defective development of left-right (LR) asymmetry, and impaired cilia motility. Rnf20, Rnf40, and Ube2b affect LR patterning and cilia synergistically. Examination of global H2Bub1 level in Xenopus embryos shows that H2Bub1 is developmentally regulated and requires Rnf20. To examine gene-specific H2Bub1, we performed ChIP-seq of mouse ciliated and nonciliated tissues and showed tissue-specific H2Bub1 marks significantly enriched at cilia genes including the transcription factor Rfx3 Rnf20 knockdown results in decreased levels of rfx3 mRNA in Xenopus, and exogenous rfx3 can rescue the Rnf20 depletion phenotype. These data suggest that Rnf20 functions at the Rfx3 locus regulating cilia motility and cardiac situs and identify H2Bub1 as an upstream transcriptional regulator controlling tissue-specific expression of cilia genes. Our findings mechanistically link the two functional gene ontologies that have been implicated in human CHD: chromatin remodeling and cilia function.

7.
Circ Res ; 124(11): 1536-1550, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31120825

RESUMO

Heritable cardiomyopathies are a class of heart diseases caused by variations in a number of genetic loci. Genetic variants on one allele lead to either a degraded protein, which causes a haploinsufficiency of that protein, or a nonfunctioning protein that subverts the molecular system within which the protein works. Over years, both of these mechanisms eventually lead to diseased heart tissue and symptoms of a failing heart. Most cardiomyopathy treatments repurpose heart failure drugs to manage these symptoms and avoid adverse outcomes. There are few therapies that correct the underlying pathogenic genetic or molecular mechanism. This review will reflect on this unmet clinical need in genetic cardiomyopathies and consider a variety of therapies that address the mechanism of disease rather than patient symptoms. These therapies are genetic, targeting a defective gene or transcript, or ameliorating a genetic insufficiency. However, there are also a number of small molecules under exploration that modulate downstream faulty protein products affected in cardiomyopathies.

8.
Annu Rev Genomics Hum Genet ; 20: 129-153, 2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30978303

RESUMO

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are common heart muscle disorders that are caused by pathogenic variants in sarcomere protein genes. HCM is characterized by unexplained cardiac hypertrophy (increased chamber wall thickness) that is accompanied by enhanced cardiac contractility and impaired relaxation. DCM is defined as increased ventricular chamber volume with contractile impairment. In this review, we discuss recent analyses that provide new insights into the molecular mechanisms that cause these conditions. HCM studies have uncovered the critical importance of conformational changes that occur during relaxation and enable energy conservation, which are frequently disturbed by HCM mutations. DCM studies have demonstrated the considerable prevalence of truncating variants in titin and have discerned that these variants reduce contractile function by impairing sarcomerogenesis. These new pathophysiologic mechanisms open exciting opportunities to identify new pharmacological targets and develop future cardioprotective strategies.

10.
Sci Transl Med ; 11(482)2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842316

RESUMO

Activin type II receptor (ActRII) ligands have been implicated in muscle wasting in aging and disease. However, the role of these ligands and ActRII signaling in the heart remains unclear. Here, we investigated this catabolic pathway in human aging and heart failure (HF) using circulating follistatin-like 3 (FSTL3) as a potential indicator of systemic ActRII activity. FSTL3 is a downstream regulator of ActRII signaling, whose expression is up-regulated by the major ActRII ligands, activin A, circulating growth differentiation factor-8 (GDF8), and GDF11. In humans, we found that circulating FSTL3 increased with aging, frailty, and HF severity, correlating with an increase in circulating activins. In mice, increasing circulating activin A increased cardiac ActRII signaling and FSTL3 expression, as well as impaired cardiac function. Conversely, ActRII blockade with either clinical-stage inhibitors or genetic ablation reduced cardiac ActRII signaling while restoring or preserving cardiac function in multiple models of HF induced by aging, sarcomere mutation, or pressure overload. Using unbiased RNA sequencing, we show that activin A, GDF8, and GDF11 all induce a similar pathologic profile associated with up-regulation of the proteasome pathway in mammalian cardiomyocytes. The E3 ubiquitin ligase, Smurf1, was identified as a key downstream effector of activin-mediated ActRII signaling, which increased proteasome-dependent degradation of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), a critical determinant of cardiomyocyte function. Together, our findings suggest that increased activin/ActRII signaling links aging and HF pathobiology and that targeted inhibition of this catabolic pathway holds promise as a therapeutic strategy for multiple forms of HF.

11.
Circ Res ; 124(8): 1172-1183, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30700234

RESUMO

RATIONALE: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues. OBJECTIVE: We aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate. METHODS AND RESULTS: We developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C ( MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment. CONCLUSIONS: SarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants.

12.
Sci Transl Med ; 11(476)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674652

RESUMO

The mechanisms by which truncating mutations in MYBPC3 (encoding cardiac myosin-binding protein C; cMyBPC) or myosin missense mutations cause hypercontractility and poor relaxation in hypertrophic cardiomyopathy (HCM) are incompletely understood. Using genetic and biochemical approaches, we explored how depletion of cMyBPC altered sarcomere function. We demonstrated that stepwise loss of cMyBPC resulted in reciprocal augmentation of myosin contractility. Direct attenuation of myosin function, via a damaging missense variant (F764L) that causes dilated cardiomyopathy (DCM), normalized the increased contractility from cMyBPC depletion. Depletion of cMyBPC also altered dynamic myosin conformations during relaxation, enhancing the myosin state that enables ATP hydrolysis and thin filament interactions while reducing the super relaxed conformation associated with energy conservation. MYK-461, a pharmacologic inhibitor of myosin ATPase, rescued relaxation deficits and restored normal contractility in mouse and human cardiomyocytes with MYBPC3 mutations. These data define dosage-dependent effects of cMyBPC on myosin that occur across the cardiac cycle as the pathophysiologic mechanisms by which MYBPC3 truncations cause HCM. Therapeutic strategies to attenuate cMyBPC activity may rescue depressed cardiac contractility in patients with DCM, whereas inhibiting myosin by MYK-461 should benefit the substantial proportion of patients with HCM with MYBPC3 mutations.

13.
Hum Mol Genet ; 28(10): 1682-1693, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30649309

RESUMO

Sex differences exist in the prevalence, presentation and outcomes of ischemic heart disease (IHD). Females have higher risk of heart failure post-myocardial infarction relative to males and are two to three times more likely to die after coronary artery bypass grafting surgery. We examined sex differences in human myocardial gene expression in response to ischemia. Left ventricular biopsies from 68 male/46 female patients undergoing aortic valve replacement surgery were obtained at baseline and after a median 74 min of cold cardioplegic arrest/ischemia. Transcriptomes were quantified by RNA-sequencing. Cell-type enrichment analysis was used to estimate the identity and relative proportions of different cell types in each sample. A sex-specific response to ischemia was observed for 271 genes. Notably, the expression FAM5C, PLA2G4E and CYP1A1 showed an increased expression in females compared to males due to ischemia and DIO3, MT1G and CMA1 showed a decreased expression in females compared to males due to ischemia. Functional annotation analysis revealed sex-specific modulation of the oxytocin signaling pathway and common pathway of fibrin clot formation. Expression quantitative trait locus (eQTL) analysis identified variant-by-sex interaction eQTLs, indicative of sex differences in the genotypic effects on gene expression. Cell-type enrichment analysis showed sex-bias in proportion of specific cell types. Common lymphoid progenitor cells and M2 macrophages were found to increase in female samples from pre- to post-ischemia, but no change was observed in male samples. These differences in response to myocardial ischemia provide insight into the sexual dimorphism of IHD and may aid in the development of sex-specific therapies that reduce myocardial injury.

14.
Cardiol Clin ; 37(1): 35-43, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30447714

RESUMO

Genetic testing has become more accessible and is increasingly being incorporated into the care of patients with hypertrophic cardiomyopathy. Genetic test results can help to refine diagnosis and distinguish at-risk relatives from those who are not at risk.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Aconselhamento Genético/métodos , Testes Genéticos/métodos , Cardiomiopatia Hipertrófica/genética , Comunicação , Diagnóstico Precoce , Feminino , Humanos , Masculino , Equipe de Assistência ao Paciente , Seleção de Pacientes , Linhagem
15.
Circulation ; 138(14): 1387-1398, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30297972

RESUMO

Background: A better understanding of the factors that contribute to heterogeneous outcomes and lifetime disease burden in hypertrophic cardiomyopathy (HCM) is critically needed to improve patient management and outcomes. The Sarcomeric Human Cardiomyopathy Registry (SHaRe) was established to provide the scale of data required to address these issues, aggregating longitudinal datasets curated by eight international HCM specialty centers. Methods: Data on 4591 HCM patients (2763 genotyped), followed for a mean of 5.4±6.9 years (24,791 patient-years; median [interquartile range] 2.9 [0.3-7.9] years) were analyzed regarding cardiac arrest, cardiac transplantation, appropriate implantable cardioverter-defibrillator (ICD) therapy, all-cause death, atrial fibrillation, stroke, New York Heart Association Functional Class III/IV symptoms (all comprising the overall composite endpoint), and left ventricular ejection fraction (LVEF)<35%. Outcomes were analyzed individually and as composite endpoints. Results: Median age of diagnosis was 45.8 [30.9-58.1] years and 37% of patients were female. Age of diagnosis and sarcomere mutation status were predictive of outcomes. Patients <40 years old at diagnosis had a 77% [95% confidence interval: 72%, 80%] cumulative incidence of the overall composite outcome by age 60, compared to 32% [29%, 36%] by age 70 for patients diagnosed >60 years. Young HCM patients (20-29 years) had 4-fold higher mortality than the general United States population at a similar age. Patients with pathogenic/likely pathogenic sarcomere mutations had two-fold greater risk for adverse outcomes compared to patients without mutations; sarcomere variants of uncertain significance were associated with intermediate risk. Heart failure and atrial fibrillation were the most prevalent adverse events, although typically not emerging for several years after diagnosis. Ventricular arrhythmias occurred in 32% [23%, 40%] of patients <40 years at diagnosis, but in 1% [1%, 2%] >60 years. Conclusions: The cumulative burden of HCM is substantial and dominated by heart failure and atrial fibrillation occurring many years following diagnosis. Young age of diagnosis and the presence of a sarcomere mutation are powerful predictors of adverse outcomes. These findings highlight the need for close surveillance throughout life, and the need to develop disease-modifying therapies.

16.
Circ Genom Precis Med ; 11(8): e002135, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30354343

RESUMO

Background Truncating variants in the TTN gene ( TTNtv) are common in patients with dilated cardiomyopathy (DCM) but also occur in the general population. Whether TTNtv are sufficient to cause DCM or require a second hit for DCM manifestation is an important clinical issue. Methods We generated a zebrafish model of an A-band TTNtv identified in 2 human DCM families in which early-onset disease appeared to be precipitated by ventricular volume overload. Cardiac phenotypes were serially assessed from 0 to 12 months using video microscopy, high-frequency echocardiography, and histopathologic analysis. The effects of sustained hemodynamic stress resulting from an anemia-induced hyperdynamic state were also evaluated. Results Homozygous ttna mutants had severe cardiac dysmorphogenesis and premature death, whereas heterozygous mutants ( ttnatv/+) survived into adulthood and spontaneously developed DCM. Six-month-old ttnatv/+ fish had reduced baseline ventricular systolic function and failed to mount a hypercontractile response when challenged by hemodynamic stress. Pulsed wave and tissue Doppler analysis also revealed unsuspected ventricular diastolic dysfunction in ttnatv/+ fish with prolonged isovolumic relaxation and increased diastolic passive stiffness in the absence of myocardial fibrosis. These defects reduced diastolic reserve under stress conditions and resulted in disproportionately greater atrial dilation than observed in wild-type fish. Conclusions Heterozygosity for A-band titin truncation is sufficient to cause DCM in adult zebrafish. Abnormalities of systolic and diastolic reserve in titin-truncated fish reduce stress tolerance and may contribute to a substrate for atrial arrhythmogenesis. These data suggest that hemodynamic stress may be an important modifiable risk factor in human TTNtv-related DCM.

18.
Nat Commun ; 9(1): 3837, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242271

RESUMO

After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump blood throughout an animal's lifespan. How this maturation process is regulated and coordinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion, mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Maintenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is associated with developmentally regulated SRF chromatin occupancy and transcriptional regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these data indicate that carefully balanced SRF activity is essential to promote CM maturation through a hierarchy of cellular processes orchestrated by sarcomere assembly.

19.
JAMA Cardiol ; 3(10): 929-938, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30140897

RESUMO

Importance: The prevalence of nonischemic dilated cardiomyopathy (DCM) is greater in individuals of African ancestry than in individuals of European ancestry. However, little is known about whether the difference in prevalence or outcomes is associated with functional genetic variants. Objective: We hypothesized that Bcl2-associated anthanogene 3 (BAG3) genetic variants were associated with outcomes in individuals of African ancestry with DCM. Design: This multicohort study of the BAG3 genotype in patients of African ancestry with dilated cardiomyopathy uses DNA obtained from African American individuals enrolled in 3 clinical studies: the Genetic Risk Assessment of African Americans With Heart Failure (GRAHF) study; the Intervention in Myocarditis and Acute Cardiomyopathy Trial-2 (IMAC-2) study; and the Genetic Risk Assessment of Cardiac Events (GRACE) study. Samples of DNA were also acquired from the left ventricular myocardium of patients of African ancestry who underwent heart transplant at the University of Colorado and University of Pittsburgh. Main Outcomes and Measures: The primary end points were the prevalence of BAG3 mutations in African American individuals and event-free survival in participants harboring functional BAG3 mutations. Results: Four BAG3 genetic variants were identified; these were expressed in 42 of 402 African American individuals (10.4%) with nonischemic heart failure and 9 of 107 African American individuals (8.4%) with ischemic heart failure but were not present in a reference population of European ancestry (P < .001). The variants included 2 nonsynonymous single-nucleotide variants; 1 three-nucleotide in-frame insertion; and 2 single-nucleotide variants that were linked in cis. The presence of BAG3 variants was associated with a nearly 2-fold (hazard ratio, 1.97 [95% CI, 1.19-3.24]; P = .01) increase in cardiac events in carriers compared with noncarriers. Transfection of transformed adult human ventricular myocytes with plasmids expressing the 4 variants demonstrated that each variant caused an increase in apoptosis and a decrease in autophagy when samples were subjected to the stress of hypoxia-reoxygenation. Conclusions and Relevance: This study demonstrates that genetic variants in BAG3 found almost exclusively in individuals of African ancestry were not causative of disease but were associated with a negative outcome in patients with a dilated cardiomyopathy through modulation of the function of BAG3. The results emphasize the importance of biological differences in causing phenotypic variance across diverse patient populations, the need to include diverse populations in genetic cohorts, and the importance of determining the pathogenicity of genetic variants.

20.
NPJ Genom Med ; 3: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131872

RESUMO

Despite major progress in defining the genetic basis of Mendelian disorders, the molecular etiology of many cases remains unknown. Patients with these undiagnosed disorders often have complex presentations and require treatment by multiple health care specialists. Here, we describe an integrated clinical diagnostic and research program using whole-exome and whole-genome sequencing (WES/WGS) for Mendelian disease gene discovery. This program employs specific case ascertainment parameters, a WES/WGS computational analysis pipeline that is optimized for Mendelian disease gene discovery with variant callers tuned to specific inheritance modes, an interdisciplinary crowdsourcing strategy for genomic sequence analysis, matchmaking for additional cases, and integration of the findings regarding gene causality with the clinical management plan. The interdisciplinary gene discovery team includes clinical, computational, and experimental biomedical specialists who interact to identify the genetic etiology of the disease, and when so warranted, to devise improved or novel treatments for affected patients. This program effectively integrates the clinical and research missions of an academic medical center and affords both diagnostic and therapeutic options for patients suffering from genetic disease. It may therefore be germane to other academic medical institutions engaged in implementing genomic medicine programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA