Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 13490, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530852

RESUMO

Little is known on maize germplasm adapted to the African highland agro-ecologies. In this study, we analyzed high-density genotyping by sequencing (GBS) data of 298 African highland adapted maize inbred lines to (i) assess the extent of genetic purity, genetic relatedness, and population structure, and (ii) identify genomic regions that have undergone selection (selective sweeps) in response to adaptation to highland environments. Nearly 91% of the pairs of inbred lines differed by 30-36% of the scored alleles, but only 32% of the pairs of the inbred lines had relative kinship coefficient <0.050, which suggests the presence of substantial redundancy in allelic composition that may be due to repeated use of fewer genetic backgrounds (source germplasm) during line development. Results from different genetic relatedness and population structure analyses revealed three different groups, which generally agrees with pedigree information and breeding history, but less so by heterotic groups and endosperm modification. We identified 944 single nucleotide polymorphic (SNP) markers that fell within 22 selective sweeps that harbored 265 protein-coding candidate genes of which some of the candidate genes had known functions. Details of the candidate genes with known functions and differences in nucleotide diversity among groups predicted based on multivariate methods have been discussed.

2.
Theor Appl Genet ; 132(4): 1145-1158, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30578434

RESUMO

KEY MESSAGE: The extent of molecular diversity parameters across three rice species was compared using large germplasm collection genotyped with genomewide SNPs and SNPs that fell within selective sweep regions. Previous studies conducted on limited number of accessions have reported very low genetic variation in African rice (Oryza glaberrima Steud.) as compared to its wild progenitor (O. barthii A. Chev.) and to Asian rice (O. sativa L.). Here, we characterized a large collection of African rice and compared its molecular diversity indices and population structure with the two other species using genomewide single nucleotide polymorphisms (SNPs) and SNPs that mapped within selective sweeps. A total of 3245 samples representing African rice (2358), Asian rice (772) and O. barthii (115) were genotyped with 26,073 physically mapped SNPs. Using all SNPs, the level of marker polymorphism, average genetic distance and nucleotide diversity in African rice accounted for 59.1%, 63.2% and 37.1% of that of O. barthii, respectively. SNP polymorphism and overall nucleotide diversity of the African rice accounted for 20.1-32.1 and 16.3-37.3% of that of the Asian rice, respectively. We identified 780 SNPs that fell within 37 candidate selective sweeps in African rice, which were distributed across all 12 rice chromosomes. Nucleotide diversity of the African rice estimated from the 780 SNPs was 8.3 × 10-4, which is not only 20-fold smaller than the value estimated from all genomewide SNPs (π = 1.6 × 10-2), but also accounted for just 4.1%, 0.9% and 2.1% of that of O. barthii, lowland Asian rice and upland Asian rice, respectively. The genotype data generated for a large collection of rice accessions conserved at the AfricaRice genebank will be highly useful for the global rice community and promote germplasm use.


Assuntos
Variação Genética , Genética Populacional , Oryza/genética , Ásia , Cromossomos de Plantas/genética , Estudos de Associação Genética , Marcadores Genéticos , Filogenia , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
3.
Mol Breed ; 38(11): 131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416368

RESUMO

Species misclassification (misidentification) and handling errors have been frequently reported in various plant species conserved at diverse gene banks, which could restrict use of germplasm for correct purpose. The objectives of the present study were to (i) determine the extent of genotyping error (reproducibility) on DArTseq-based single-nucleotide polymorphisms (SNPs); (ii) determine the proportion of misclassified accessions across 3134 samples representing three African rice species complex (Oryza glaberrima, O. barthii, and O. longistaminata) and an Asian rice (O. sativa), which are conserved at the AfricaRice gene bank; and (iii) develop species- and sub-species (ecotype)-specific diagnostic SNP markers for rapid and low-cost quality control (QC) analysis. Genotyping error estimated from 15 accessions, each replicated from 2 to 16 times, varied from 0.2 to 3.1%, with an overall average of 0.8%. Using a total of 3134 accessions genotyped with 31,739 SNPs, the proportion of misclassified samples was 3.1% (97 of the 3134 accessions). Excluding the 97 misclassified accessions, we identified a total of 332 diagnostic SNPs that clearly discriminated the three indigenous African species complex from Asian rice (156 SNPs), O. longistaminata accessions from both O. barthii and O. glaberrima (131 SNPs), and O. sativa spp. indica from O. sativa spp. japonica (45 SNPs). Using chromosomal position, minor allele frequency, and polymorphic information content as selection criteria, we recommended a subset of 24 to 36 of the 332 diagnostic SNPs for routine QC genotyping, which would be highly useful in determining the genetic identity of each species and correct human errors during routine gene bank operations.

4.
Mol Breed ; 38(5): 66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29773962

RESUMO

In sub-Saharan Africa, maize is the key determinant of food security for smallholder farmers. The sudden outbreak of maize lethal necrosis (MLN) disease is seriously threatening the maize production in the region. Understanding the genetic basis of MLN resistance is crucial. In this study, we used four biparental populations applied linkage mapping and joint linkage mapping approaches to identify and validate the MLN resistance-associated genomic regions. All populations were genotyped with low to high density markers and phenotyped in multiple environments against MLN under artificial inoculation. Phenotypic variation for MLN resistance was significant and heritability was moderate to high in all four populations for both early and late stages of disease infection. Linkage mapping revealed three major quantitative trait loci (QTL) on chromosomes 3, 6, and 9 that were consistently detected in at least two of the four populations. Phenotypic variance explained by a single QTL in each population ranged from 3.9% in population 1 to 43.8% in population 2. Joint linkage association mapping across three populations with three biometric models together revealed 16 and 10 main effect QTL for MLN-early and MLN-late, respectively. The QTL identified on chromosomes 3, 5, 6, and 9 were consistent with the QTL identified by linkage mapping. Ridge regression best linear unbiased prediction with five-fold cross-validation revealed high accuracy for prediction across populations for both MLN-early and MLN-late. Overall, the study discovered and validated the presence of major effect QTL on chromosomes 3, 6, and 9 which can be potential candidates for marker-assisted breeding to improve the MLN resistance.

5.
Front Plant Sci ; 9: 446, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686690

RESUMO

Using interspecific crosses involving Oryza glaberrima Steud. as donor and O. sativa L. as recurrent parents, rice breeders at the Africa Rice Center developed several 'New Rice for Africa (NERICA)' improved varieties. A smaller number of interspecific and intraspecific varieties have also been released as 'Advanced Rice for Africa (ARICA)'. The objective of the present study was to investigate the genetic variation, relatedness, and population structure of 330 widely used rice genotypes in Africa using DArTseq-based single nucleotide polymorphisms (SNPs). A sample of 11 ARICAs, 85 NERICAs, 62 O. sativa spp. japonica, and 172 O. sativa spp. indica genotypes were genotyped with 27,560 SNPs using diversity array technology (DArT)-based sequencing (DArTseq) platform. Nearly 66% of the SNPs were polymorphic, of which 15,020 SNPs were mapped to the 12 rice chromosomes. Genetic distance between pairs of genotypes that belong to indica, japonica, ARICA, and NERICA varied from 0.016 to 0.623, from 0.020 to 0.692, from 0.075 to 0.763, and from 0.014 to 0.644, respectively. The proportion of pairs of genotypes with genetic distance > 0.400 was the largest within NERICAs (35.1% of the pairs) followed by ARICAs (18.2%), japonica (17.4%), and indica (5.6%). We found one pair of japonica, 11 pairs of indica, and 35 pairs of NERICA genotypes differing by <2% of the total scored alleles, which was due to 26 pairs of genotypes with identical pedigrees. Cluster analysis, principal component analysis, and the model-based population structure analysis all revealed two distinct groups corresponding to the lowland (primarily indica and lowland NERICAs) and upland (japonica and upland NERICAs) growing ecologies. Most of the interspecific lowland NERICAs formed a sub-group, likely caused by differences in the O. glaberrima genome as compared with the indica genotypes. Analysis of molecular variance revealed very great genetic differentiation (FST = 0.688) between the lowland and upland ecologies, and 31.2% of variation attributable to differences within cluster groups. About 8% (1,197 of 15,020) of the 15,020 SNPs were significantly (P < 0.05) different between the lowland and upland ecologies and formed contrasting haplotypes that could clearly discriminate lowland from upland genotypes. This is the first study using high density markers that characterized NERICA and ARICA varieties in comparison with indica and japonica varieties widely used in Africa, which could aid rice breeders on parent selection for developing new improved rice germplasm.

6.
Front Plant Sci ; 8: 1916, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167677

RESUMO

Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low density SNPs were used to evaluate the genomic prediction accuracy (rMG ) of the six trait-environment combinations under various levels of training population size (TPS) and marker density (MD), and assess the effect of trait heritability (h2 ), TPS and MD on rMG estimation. Our results showed that: (1) moderate rMG values were obtained for different trait-environment combinations, when 50% of the total genotypes was used as training population and ~200 SNPs were used for prediction; (2) rMG increased with an increase in h2 , TPS and MD, both correlation and variance analyses showed that h2 is the most important factor and MD is the least important factor on rMG estimation for most of the trait-environment combinations; (3) predictions between pairwise half-sib populations showed that the rMG values for all the six trait-environment combinations were centered around zero, 49% predictions had rMG values above zero; (4) the trend observed in rMG differed with the trend observed in rMG /h, and h is the square root of heritability of the predicted trait, it indicated that both rMG and rMG /h values should be presented in GS study to show the accuracy of genomic selection and the relative accuracy of genomic selection compared with phenotypic selection, respectively. This study provides useful information to maize breeders to design genomic selection workflow in their breeding programs.

7.
Front Plant Sci ; 8: 1748, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093721

RESUMO

The sequence variation present in accessions conserved in genebanks can best be used in plant improvement when it is properly characterized and published. Using low cost and high density single nucleotide polymorphism (SNP) assays, the genetic diversity, population structure, and relatedness between pairs of accessions can be quickly assessed. This information is relevant for different purposes, including creating core and mini-core sets that represent the maximum possible genetic variation contained in the whole collection. Here, we studied the genetic variation and population structure of 2,179 Oryza glaberrima Steud. accessions conserved at the AfricaRice genebank using 27,560 DArTseq-based SNPs. Only 14% (3,834 of 27,560) of the SNPs were polymorphic across the 2,179 accessions, which is much lower than diversity reported in other Oryza species. Genetic distance between pairs of accessions varied from 0.005 to 0.306, with 1.5% of the pairs nearly identical, 8.0% of the pairs similar, 78.1% of the pairs moderately distant, and 12.4% of the pairs very distant. The number of redundant accessions that contribute little or no new genetic variation to the O. glaberrima collection was very low. Using the maximum length sub-tree method, we propose a subset of 1,330 and 350 accessions to represent a core and mini-core collection, respectively. The core and mini-core sets accounted for ~61 and 16%, respectively, of the whole collection, and captured 97-99% of the SNP polymorphism and nearly all allele and genotype frequencies observed in the whole O. glaberrima collection available at the AfricaRice genebank. Cluster, principal component and model-based population structure analyses all divided the 2,179 accessions into five groups, based roughly on country of origin but less so on ecology. The first, third and fourth groups consisted of accessions primarily from Liberia, Nigeria, and Mali, respectively; the second group consisted primarily of accessions from Togo and Nigeria; and the fifth and smallest group was a mixture of accessions from multiple countries. Analysis of molecular variance showed between 10.8 and 28.9% of the variation among groups with the remaining 71.1-89.2% attributable to differences within groups.

8.
BMC Genomics ; 18(1): 777, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025420

RESUMO

BACKGROUND: Molecular characterization is important for efficient utilization of germplasm and development of improved varieties. In the present study, we investigated the genetic purity, relatedness and population structure of 265 maize inbred lines from the Ethiopian Institute of Agricultural Research (EIAR), the International Maize and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical Agriculture (IITA) using 220,878 single nucleotide polymorphic (SNP) markers obtained using genotyping by sequencing (GBS). RESULTS: Only 22% of the inbred lines were considered pure with <5% heterogeneity, while the remaining 78% of the inbred lines had a heterogeneity ranging from 5.1 to 31.5%. Pairwise genetic distances among the 265 inbred lines varied from 0.011 to 0.345, with 89% of the pairs falling between 0.301 and 0.345. Only <1% of the pairs had a genetic distance lower than 0.200, which included 14 pairs of sister lines that were nearly identical. Relative kinship analysis showed that the kinship coefficients for 59% of the pairs of lines was close to zero, which agrees with the genetic distance estimates. Principal coordinate analysis, discriminant analysis of principal components (DAPC) and the model-based population structure analysis consistently suggested the presence of three groups, which generally agreed with pedigree information (genetic background). Although not distinct enough, the SNP markers showed some level of separation between the two CIMMYT heterotic groups A and B established based on pedigree and combining ability information. CONCLUSIONS: The high level of heterogeneity detected in most of the inbred lines suggested the requirement for purification or further inbreeding except those deliberately maintained at early inbreeding level. The genetic distance and relative kinship analysis clearly indicated the uniqueness of most of the inbred lines in the maize germplasm available for breeders in the mid-altitude maize breeding program of Ethiopia. Results from the present study facilitate the maize breeding work in Ethiopia and germplasm exchange among breeding programs in Africa. We suggest the incorporation of high density molecular marker information in future heterotic group assignments.


Assuntos
Adaptação Fisiológica/genética , Altitude , Umidade , Endogamia , Polimorfismo de Nucleotídeo Único , Zea mays/genética , Zea mays/fisiologia , Marcadores Genéticos/genética , Genótipo , Técnicas de Genotipagem
9.
PLoS One ; 12(2): e0171528, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158253

RESUMO

Recently, we investigated the effect of the wheat 90K single nucleotide polymorphic (SNP) array and three gene-specific (Ppd-D1, Vrn-A1 and Rht-B1) markers on quantitative trait loci (QTL) detection in a recombinant inbred lines (RILs) population derived from a cross between two spring wheat (Triticum aestivum L.) cultivars, 'Attila' and 'CDC Go', and evaluated for eight agronomic traits at three environments under organic management. The objectives of the present study were to investigate the effect of conventional management on QTL detection in the same mapping population using the same set of markers as the organic management and compare the results with organic management. Here, we evaluated 167 RILs for number of tillers (tillering), flowering time, maturity, plant height, test weight (grain volume weight), 1000 kernel weight, grain yield, and grain protein content at seven conventionally managed environments from 2008 to 2014. Using inclusive composite interval mapping (ICIM) on phenotypic data averaged across seven environments and a subset of 1203 informative markers (1200 SNPs and 3 gene specific markers), we identified a total of 14 QTLs associated with flowering time (1), maturity (2), plant height (1), grain yield (1), test weight (2), kernel weight (4), tillering (1) and grain protein content (2). Each QTL individually explained from 6.1 to 18.4% of the phenotypic variance. Overall, the QTLs associated with each trait explained from 9.7 to 35.4% of the phenotypic and from 22.1 to 90.8% of the genetic variance. Three chromosomal regions on chromosomes 2D (61-66 cM), 4B (80-82 cM) and 5A (296-297 cM) harbored clusters of QTLs associated with two to three traits. The coincidental region on chromosome 5A harbored QTL clusters for both flowering and maturity time, and mapped about 2 cM proximal to the Vrn-A1 gene, which was in high linkage disequilibrium (0.70 ≤ r2 ≤ 0.75) with SNP markers that mapped within the QTL confidence interval. Six of the 14 QTLs (one for flowering time and plant height each, and two for maturity and kernel weight each) were common between the conventional and organic management systems, which suggests issues in directly utilizing gene discovery results based on conventional management to make in detail selection (decision) for organic management.


Assuntos
Genes de Plantas , Locos de Características Quantitativas , Triticum/genética , Agricultura , Cromossomos de Plantas , Cruzamentos Genéticos , Marcadores Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Triticum/crescimento & desenvolvimento
10.
PLoS One ; 11(8): e0160749, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27508500

RESUMO

African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders.


Assuntos
Oryza/genética , Locos de Características Quantitativas , África , Animais , Cromossomos de Plantas , Dípteros , Genética Populacional , Oryza/fisiologia , Fenótipo , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único
11.
PLoS One ; 11(8): e0160623, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27513976

RESUMO

We recently reported three earliness per se quantitative trait loci (QTL) associated with flowering and maturity in a recombinant inbred lines (RILs) population derived from a cross between the spring wheat (Triticum aestivum L.) cultivars 'Cutler' and 'AC Barrie' using 488 microsatellite and diversity arrays technology (DArT) markers. Here, we present QTLs associated with flowering time, maturity, plant height, and grain yield using high density single nucleotide polymorphic (SNP) markers in the same population. A mapping population of 158 RILs and the two parents were evaluated at five environments for flowering, maturity, plant height and grain yield under field conditions, at two greenhouse environments for flowering, and genotyped with a subset of 1809 SNPs out of the 90K SNP array and 2 functional markers (Ppd-D1 and Rht-D1). Using composite interval mapping on the combined phenotype data across all environments, we identified a total of 19 QTLs associated with flowering time in greenhouse (5), and field (6) conditions, maturity (5), grain yield (2) and plant height (1). We mapped these QTLs on 8 chromosomes and they individually explained between 6.3 and 37.8% of the phenotypic variation. Four of the 19 QTLs were associated with multiple traits, including a QTL on 2D associated with flowering, maturity and grain yield; two QTLs on 4A and 7A associated with flowering and maturity, and another QTL on 4D associated with maturity and plant height. However, only the QTLs on both 2D and 4D had major effects, and they mapped adjacent to well-known photoperiod response Ppd-D1 and height reducing Rht-D1 genes, respectively. The QTL on 2D reduced flowering and maturity time up to 5 days with a yield penalty of 436 kg ha-1, while the QTL on 4D reduced plant height by 13 cm, but increased maturity by 2 days. The high density SNPs allowed us to map eight moderate effect, two major effect, and nine minor effect QTLs that were not identified in our previous study using microsatellite and DArT markers. Results from this study provide additional information to wheat researchers developing early maturing and short stature spring wheat cultivars.


Assuntos
Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genótipo , Fenótipo , Desenvolvimento Vegetal/genética , Polimorfismo de Nucleotídeo Único , Triticum/crescimento & desenvolvimento
12.
Euphytica ; 208: 285-297, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27397932

RESUMO

A marker-assisted recurrent selection (MARS) program was undertaken in sub-Saharan Africa to improve grain yield under drought-stress in 10 biparental tropical maize populations. The objectives of the present study were to evaluate the performance of C1S2-derived hybrids obtained after three MARS cycles (one cycle of recombination (C1), followed by two generations of selfing (S2), and to study yield stability under both drought-stress (DS) and well-watered (WW) conditions. For each of the 10 populations, we evaluated hybrids developed by crossing 47-74 C1S2 lines advanced through MARS, the best five S5 lines developed through pedigree selection, and the founder parents with a single-cross tester from a complementary heterotic group. The hybrids and five commercial checks were evaluated in Kenya under 1-3 DS and 3-5 WW conditions with two replications. Combined across DS locations, the top 10 C1S2-derived hybrids from each of the 10 biparental populations produced 0.5-46.3 and 11.1-55.1 % higher mean grain yields than hybrids developed using pedigree selection and the commercial checks, respectively. Across WW locations, the best 10 hybrids derived from C1S2 of each population produced 3.4-13.3 and 7.9-36.5 % higher grain yields than hybrids derived using conventional pedigree breeding and the commercial checks, respectively. Mean days to anthesis of the best 10 C1S2 hybrids were comparable to those of hybrids developed using the pedigree method, the founder parents and the commercial checks, with a maximum difference of 3.5 days among the different groups. However, plant height was significantly (P < 0.01) different in most pairwise comparisons. Our results showed the superiority of MARS over pedigree selection for improving diverse tropical maize populations as sources of improved lines for stress-prone environments and thus MARS can be effectively integrated into mainstream maize breeding programs.

13.
Theor Appl Genet ; 129(4): 753-765, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26849239

RESUMO

KEY MESSAGE: Molecular characterization information on genetic diversity, population structure and genetic relationships provided by this research will help maize breeders to better understand how to utilize the current CML collection. CIMMYT maize inbred lines (CMLs) have been widely used all over the world and have contributed greatly to both tropical and temperate maize improvement. Genetic diversity and population structure of the current CML collection and of six temperate inbred lines were assessed and relationships among all lines were determined with genotyping-by-sequencing SNPs. Results indicated that: (1) wider genetic distance and low kinship coefficients among most pairs of lines reflected the uniqueness of most lines in the current CML collection; (2) the population structure and genetic divergence between the Temperate subgroup and Tropical subgroups were clear; three major environmental adaptation groups (Lowland Tropical, Subtropical/Mid-altitude and Highland Tropical subgroups) were clearly present in the current CML collection; (3) the genetic diversity of the three Tropical subgroups was similar and greater than that of the Temperate subgroup; the average genetic distance between the Temperate and Tropical subgroups was greater than among Tropical subgroups; and (4) heterotic patterns in each environmental adaptation group estimated using GBS SNPs were only partially consistent with patterns estimated based on combining ability tests and pedigree information. Combining current heterotic information based on combining ability tests and the genetic relationships inferred from molecular marker analyses may be the best strategy to define heterotic groups for future tropical maize improvement. Information resulting from this research will help breeders to better understand how to utilize all the CMLs to select parental lines, replace testers, assign heterotic groups and create a core set of breeding germplasm.


Assuntos
Genótipo , Vigor Híbrido , Polimorfismo de Nucleotídeo Único , Zea mays/genética , DNA de Plantas/genética , Frequência do Gene , Endogamia , Melhoramento Vegetal , Análise de Sequência de DNA
14.
BMC Genomics ; 16: 908, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26545737

RESUMO

BACKGROUND: Quality control (QC) analysis is an important component in maize breeding and seed systems. Genotyping by next-generation sequencing (GBS) is an emerging method of SNP genotyping, which is being increasingly adopted for discovery applications, but its suitability for QC analysis has not been explored. The objectives of our study were 1) to evaluate the level of genetic purity and identity among two to nine seed sources of 16 inbred lines using 191 Kompetitive Allele Specific PCR (KASP) and 257,268 GBS markers, and 2) compare the correlation between the KASP-based low and the GBS-based high marker density on QC analysis. RESULTS: Genetic purity within each seed source varied from 49 to 100% for KASP and from 74 to 100% for GBS. All except one of the inbred lines obtained from CIMMYT showed 98 to 100% homogeneity irrespective of the marker type. On the contrary, only 16 and 21% of the samples obtained from EIAR and partners showed ≥95% purity for KASP and GBS, respectively. The genetic distance among multiple sources of the same line designation varied from 0.000 to 0.295 for KASP and from 0.004 to 0.230 for GBS. Five lines from CIMMYT showed ≤ 0.05 distance among multiple sources of the same line designation; the remaining eleven inbred lines, including two from CIMMYT and nine from Ethiopia showed higher than expected genetic distances for two or more seed sources. The correlation between the 191 KASP and 257,268 GBS markers was 0.88 for purity and 0.93 for identity. A reduction in the number of GBS markers to 1,343 decreased the correlation coefficient only by 0.03. CONCLUSIONS: Our results clearly showed high discrepancy both in genetic purity and identity by the origin of the seed sources (institutions) irrespective of the type of genotyping platform and number of markers used for analyses. Although there were some numerical differences between KASP and GBS, the overall conclusions reached from both methods was basically similar, which clearly suggests that smaller subset of preselected and high quality markers are sufficient for QC analysis that can easily be done using low marker density genotyping platforms, such as KASP. Results from this study would be highly relevant for plant breeders and seed system specialists.


Assuntos
Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Zea mays/genética , Alelos , Genótipo
15.
G3 (Bethesda) ; 5(10): 2155-64, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26290571

RESUMO

A genomic selection index (GSI) is a linear combination of genomic estimated breeding values that uses genomic markers to predict the net genetic merit and select parents from a nonphenotyped testing population. Some authors have proposed a GSI; however, they have not used simulated or real data to validate the GSI theory and have not explained how to estimate the GSI selection response and the GSI expected genetic gain per selection cycle for the unobserved traits after the first selection cycle to obtain information about the genetic gains in each subsequent selection cycle. In this paper, we develop the theory of a GSI and apply it to two simulated and four real data sets with four traits. Also, we numerically compare its efficiency with that of the phenotypic selection index (PSI) by using the ratio of the GSI response over the PSI response, and the PSI and GSI expected genetic gain per selection cycle for observed and unobserved traits, respectively. In addition, we used the Technow inequality to compare GSI vs. PSI efficiency. Results from the simulated data were confirmed by the real data, indicating that GSI was more efficient than PSI per unit of time.


Assuntos
Simulação por Computador , Modelos Genéticos , Seleção Genética , Algoritmos , Conjuntos de Dados como Assunto
16.
Theor Appl Genet ; 128(10): 1957-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26152570

RESUMO

KEY MESSAGE: Genome-wide association analysis in tropical and subtropical maize germplasm revealed that MLND resistance is influenced by multiple genomic regions with small to medium effects. The maize lethal necrosis disease (MLND) caused by synergistic interaction of Maize chlorotic mottle virus and Sugarcane mosaic virus, and has emerged as a serious threat to maize production in eastern Africa since 2011. Our objective was to gain insights into the genetic architecture underlying the resistance to MLND by genome-wide association study (GWAS) and genomic selection. We used two association mapping (AM) panels comprising a total of 615 diverse tropical/subtropical maize inbred lines. All the lines were evaluated against MLND under artificial inoculation. Both the panels were genotyped using genotyping-by-sequencing. Phenotypic variation for MLND resistance was significant and heritability was moderately high in both the panels. Few promising lines with high resistance to MLND were identified to be used as potential donors. GWAS revealed 24 SNPs that were significantly associated (P < 3 × 10(-5)) with MLND resistance. These SNPs are located within or adjacent to 20 putative candidate genes that are associated with plant disease resistance. Ridge regression best linear unbiased prediction with five-fold cross-validation revealed higher prediction accuracy for IMAS-AM panel (0.56) over DTMA-AM (0.36) panel. The prediction accuracy for both within and across panels is promising; inclusion of MLND resistance associated SNPs into the prediction model further improved the accuracy. Overall, the study revealed that resistance to MLND is controlled by multiple loci with small to medium effects and the SNPs identified by GWAS can be used as potential candidates in MLND resistance breeding program.


Assuntos
Resistência à Doença/genética , Vírus do Mosaico/patogenicidade , Doenças das Plantas/genética , Zea mays/genética , Estudos de Associação Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/virologia , Polimorfismo de Nucleotídeo Único , Zea mays/virologia
17.
Theor Appl Genet ; 128(9): 1839-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26081946

RESUMO

Msv1 , the major QTL for MSV resistance was delimited to an interval of 0.87 cM on chromosome 1 at 87 Mb and production markers with high prediction accuracy were developed. Maize streak virus (MSV) disease is a devastating disease in the Sub-Saharan Africa (SSA), which causes significant yield loss in maize. Resistance to MSV has previously been mapped to a major QTL (Msv1) on chromosome 1 that is germplasm and environment independent and to several minor loci elsewhere in the genome. In this study, Msv1 was fine-mapped through QTL isogenic recombinant strategy using a large F 2 population of CML206 × CML312 to an interval of 0.87 cM on chromosome 1. Genome-wide association study was conducted in the DTMA (Drought Tolerant Maize for Africa)-Association mapping panel with 278 tropical/sub-tropical breeding lines from CIMMYT using the high-density genotyping-by-sequencing (GBS) markers. This study identified 19 SNPs in the region between 82 and 93 Mb on chromosome 1(B73 RefGen_V2) at a P < 1.00E-04, which coincided with the fine-mapped region of Msv1. Haplotype trend regression identified a haplotype block significantly associated with response to MSV. Three SNPs in this haplotype block at 87 Mb on chromosome 1 had an accuracy of 0.94 in predicting the disease reaction in a collection of breeding lines with known responses to MSV infection. In two biparental populations, selection for resistant Msv1 haplotype demonstrated a reduction of 1.03-1.39 units on a rating scale of 1-5, compared to the susceptible haplotype. High-throughput KASP assays have been developed for these three SNPs to enable routine marker screening in the breeding pipeline for MSV resistance.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Vírus do Listrado do Milho , Doenças das Plantas/genética , Locos de Características Quantitativas , Zea mays/genética , Cromossomos de Plantas , Marcadores Genéticos , Haplótipos , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Zea mays/virologia
18.
Nat Commun ; 6: 6914, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25881062

RESUMO

In addition to single-nucleotide polymorphisms, structural variation is abundant in many plant genomes. The structural variation across a species can be represented by a 'pan-genome', which is essential to fully understand the genetic control of phenotypes. However, the pan-genome's complexity hinders its accurate assembly via sequence alignment. Here we demonstrate an approach to facilitate pan-genome construction in maize. By performing 18 trillion association tests we map 26 million tags generated by reduced representation sequencing of 14,129 maize inbred lines. Using machine-learning models we select 4.4 million accurately mapped tags as sequence anchors, 1.1 million of which are presence/absence variations. Structural variations exhibit enriched association with phenotypic traits, indicating that it is a significant source of adaptive variation in maize. The ability to efficiently map ultrahigh-density pan-genome sequence anchors enables fine characterization of structural variation and will advance both genetic research and breeding in many crops.


Assuntos
Genoma de Planta/genética , Zea mays/genética , Mapeamento Cromossômico , Aprendizado de Máquina , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Análise de Sequência de DNA
19.
Methods Mol Biol ; 1115: 53-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24415469

RESUMO

Taxonomists must be familiar with a number of issues in collecting and transporting samples using freezing methods (liquid nitrogen and dry ice), desiccants (silica gel and blotter paper), and preservatives (CTAB, ethanol, and isopropanol), with each method having its own merits and limitations. For most molecular studies, a reasonably good quality and quantity of DNA is required, which can only be obtained using standard DNA extraction protocols. There are many DNA extraction protocols that vary from simple and quick ones that yield low-quality DNA but good enough for routine analyses to the laborious and time-consuming standard methods that usually produce high quality and quantities of DNA. The protocol to be chosen will depend on the quality and quantity of DNA needed, the nature of samples, and the presence of natural substances that may interfere with the extraction and subsequent analysis. The protocol described in this chapter has been tested for extracting DNA from eight species and provided very good quality and quantity of DNA for different applications, including those genotyping methods that use restriction enzymes.


Assuntos
Fracionamento Químico/métodos , DNA de Plantas/isolamento & purificação , Folhas de Planta/química , Folhas de Planta/citologia , Controle de Qualidade
20.
BMC Genomics ; 14: 313, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23663209

RESUMO

BACKGROUND: Identification of QTL with large phenotypic effects conserved across genetic backgrounds and environments is one of the prerequisites for crop improvement using marker assisted selection (MAS). The objectives of this study were to identify meta-QTL (mQTL) for grain yield (GY) and anthesis silking interval (ASI) across 18 bi-parental maize populations evaluated in the same conditions across 2-4 managed water stressed and 3-4 well watered environments. RESULTS: The meta-analyses identified 68 mQTL (9 QTL specific to ASI, 15 specific to GY, and 44 for both GY and ASI). Mean phenotypic variance explained by each mQTL varied from 1.2 to 13.1% and the overall average was 6.5%. Few QTL were detected under both environmental treatments and/or multiple (>4 populations) genetic backgrounds. The number and 95% genetic and physical confidence intervals of the mQTL were highly reduced compared to the QTL identified in the original studies. Each physical interval of the mQTL consisted of 5 to 926 candidate genes. CONCLUSIONS: Meta-analyses reduced the number of QTL by 68% and narrowed the confidence intervals up to 12-fold. At least the 4 mQTL (mQTL2.2, mQTL6.1, mQTL7.5 and mQTL9.2) associated with GY under both water-stressed and well-watered environments and detected up to 6 populations may be considered for fine mapping and validation to confirm effects in different genetic backgrounds and pyramid them into new drought resistant breeding lines. This is the first extensive report on meta-analysis of data from over 3100 individuals genotyped using the same SNP platform and evaluated in the same conditions across a wide range of managed water-stressed and well-watered environments.


Assuntos
Meio Ambiente , Flores/crescimento & desenvolvimento , Locos de Características Quantitativas , Estresse Fisiológico/efeitos dos fármacos , Água/farmacologia , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Flores/efeitos dos fármacos , Flores/genética , Genótipo , Fenótipo , Estresse Fisiológico/genética , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA