Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Materials (Basel) ; 15(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207976


Auxetic metamaterials are characterized by a negative Poisson ratio (NPR) and display an unexpected property of lateral expansion when stretched and densification when compressed. Auxetic properties can be achieved by designing special microstructures, hence their classification as metamaterials, and can be manufactured with varied raw materials and methods. Since work in this field began, auxetics have been considered for different biomedical applications, as some biological tissues have auxetic-like behaviour due to their lightweight structure and morphing properties, which makes auxetics ideal for interacting with the human body. This research study is developed with the aim of presenting an updated overview of auxetic metamaterials for biomedical devices. It stands out for providing a comprehensive view of medical applications for auxetics, including a focus on prosthetics, orthotics, ergonomic appliances, performance enhancement devices, in vitro medical devices for interacting with cells, and advanced medicinal clinical products, especially tissue engineering scaffolds with living cells. Innovative design and simulation approaches for the engineering of auxetic-based products are covered, and the relevant manufacturing technologies for prototyping and producing auxetics are analysed, taking into consideration those capable of processing biomaterials and enabling multi-scale and multi-material auxetics. An engineering design rational for auxetics-based medical devices is presented with integrative purposes. Finally, key research, development and expected technological breakthroughs are discussed.

Materials (Basel) ; 13(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640623


A hybrid implant with a structure mimicking that of natural bone was developed. Titanium alloy Ti-6Al-4V prepared with three-dimensional (3D)-printing technology was used to simulate the cortical-bone layer. The mismatch in the mechanical properties of bone and titanium alloy was solved by creating special perforations in the titanium's surface. Porous ultra-high molecular weight polyethylene (UHMWPE) with high osteogenous properties was used to simulate the cancellous-bone tissue. A method for creating a porous UHMWPE structure inside the titanium reinforcement is proposed. The porous UHMWPE was studied with scanning electron microscope (SEM) to confirm that the pores that formed were open, interconnected, and between 50 and 850 µm in size. Mechanical-compression tests done on the obtained UHMWPE/titanium-hybrid-implant samples showed that their mechanical properties simulated those of natural bone.

Materials (Basel) ; 12(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288424


Ultra-high molecular weight polyethylene (UHMWPE) is a bioinert polymer that is widely used as bulk material in reconstructive surgery for structural replacements of bone and cartilage. Porous UHMWPE can be used for trabecular bone tissue replacement, and it can be used in living cell studies as bioinert 3D substrate permeable to physiological fluids. It is important to develop techniques to govern the morphology of open-cell porous UHMWPE structures (pore size, shape, and connectivity), since this allows control over proliferation and differentiation in living cell populations. We report experimental results on the mechanical behavior of porous open-cell UHMWPE obtained through sacrificial removal (desalination) of hot-molded UHMWPE-NaCl powder mixtures with pore sizes in the range 75 µm to 500 µm. The structures were characterized using SEM and mechanically tested under static compression and dynamic mechanical analysis (DMA), bending, and tensile tests. Apparent elastic modulus and complex modulus were in the range of 1.2 to 2.5 MPa showing a weak dependence on cell size. Densification under compression caused the apparent elastic modulus to increase to 130 MPa.

J Adv Res ; 16: 113-122, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30899594


Polylactide (PLA)-hydroxyapatite (HAp) composite components have attracted extensive attentions for a variety of biomedical applications. This study seeks to explore how the biocompatible PLA matrix and the bioactive HAp fillers respond to thermo-mechanical environment of a PLA-HAp composite manufactured by 3D printing using Fused Filament Fabrication (FFF). The insight is obtained by in situ synchrotron small- and wide- angle X-ray scattering (SAXS/WAXS) techniques. The thermo-mechanical cyclic loading tests (0-20 MPa, 22-56 °C) revealed strain softening (Mullins effect) of PLA-HAp composite at both room and elevated temperatures (<56 °C), which can be attributed primarily to the non-linear deformation of PLA nanometre-scale lamellar structure. In contrast, the strain softening of the PLA amorphous matrix appeared only at elevated temperatures (>50 °C) due to the increased chain mobility. Above this temperature the deformation behaviour of the soft PLA lamella changes drastically. The thermal test (0-110 °C) identified multiple crystallisation mechanisms of the PLA amorphous matrix, including reversible stress-induced large crystal formation at room temperature, reversible coupled stress-temperature-induced PLA crystal formation appearing at around 60 °C, as well as irreversible heating-induced crystallisation above 92 °C. The shape memory test (0-3.75 MPa, 0-70 °C) of the PLA-HAp composite demonstrates a fixing ratio (strain upon unloading/strain before unloading) of 65% and rather a ∼100% recovery ratio, showing an improved shape memory property. These findings provide a new framework for systematic characterisation of the thermo-mechanical response of composites, and open up ways towards improved material design and enhanced functionality for biomedical applications.

Polymers (Basel) ; 9(11)2017 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30965932


Bulk oriented films based on ultrahigh molecular weight polyethylene (UHMWPE) with a drawing ratio of 35 were prepared by using a low solvent concentration. Bulk oriented films were filled with fluorinated multi-walled carbon nanotubes (FMWCNTs). The structure of bulk oriented films on UHMWPE, which were manufactured at different stages of orientation, was investigated by scanning electron microscope (SEM) and differential scanning calorimetry (DSC). The addition of FMWCNTs at a concentration of 0.05 wt % in bulk oriented UHMWPE films led to an increase in the tensile strength by 10% (up to 1020 ± 23 MPa) compared to unfilled oriented films. However, the addition of FMWCNTs at a concentration of more than 0.5 wt % led to a decrease in tensile strength due to excessive accumulation of nanotubes and hindering of self-diffusion of UHMWPE macromolecules. The multiple increase in tensile strength, doubling the hardness, the formation of fibrillar structure, and the presence of carbon nanotubes led to a significant increase in tribological properties in bulk oriented films. Bulk oriented UHMWPE/1% FMWCNT films can be operated at a maximum contact pressure that is 18 times higher and exhibit a specific wear rate more than an order of magnitude and less than the traditional UHMWPE of isotropic structure. Bulk oriented UHMWPE/1% FMWCNT films have an extremely low dry coefficient of friction (COF) of 0.075 at a contact pressure of 31 MPa. The developed bulk oriented films can be used for manufacturing frictional surfaces for sliding bearings, or for acetabular cups for knee and hip endoprostheses.