Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Med Chem ; 63(22): 14067-14086, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33191745

RESUMO

Mithramycin A (MTM) inhibits the oncogenic transcription factor EWS-FLI1 in Ewing sarcoma, but poor pharmacokinetics (PK) and toxicity limit its clinical use. To address this limitation, we report an efficient MTM 2'-oxime (MTMox) conjugation strategy for rapid MTM diversification. Comparative cytotoxicity assays of 41 MTMox analogues using E-twenty-six (ETS) fusion-dependent and ETS fusion-independent cancer cell lines revealed improved ETS fusion-independent/dependent selectivity indices for select 2'-conjugated analogues as compared to MTM. Luciferase-based reporter assays demonstrated target engagement at low nM concentrations, and molecular assays revealed that analogues inhibit the transcriptional activity of EWS-FLI1. These in vitro screens identified MTMox32E (a Phe-Trp dipeptide-based 2'-conjugate) for in vivo testing. Relative to MTM, MTMox32E displayed an 11-fold increase in plasma exposure and improved efficacy in an Ewing sarcoma xenograft. Importantly, these studies are the first to point to simple C3 aliphatic side-chain modification of MTM as an effective strategy to improve PK.

2.
Folia Microbiol (Praha) ; 65(2): 381-392, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31401763

RESUMO

Citrus black spot (CBS) and post-bloom fruit drop (PFD), caused by Phyllosticta citricarpa and Colletotrichum abscissum, respectively, are two important citrus diseases worldwide. CBS depreciates the market value and prevents exportation of citrus fruits to Europe. PFD under favorable climatic conditions can cause the abscission of flowers, thereby reducing citrus production by 80%. An ecofriendly alternative to control plant diseases is the use of endophytic microorganisms, or secondary metabolites produced by them. Strain LGMF1631, close related to Diaporthe cf. heveae 1, was isolated from the medicinal plant Stryphnodendron adstringens and showed significant antimicrobial activity, in a previous study. In view of the potential presented by strain LGMF1631, and the absence of chemical data for secondary metabolites produced by D. cf. heveae, we decided to characterize the compounds produced by strain LGMF1631. Based on ITS, TEF1, and TUB phylogenetic analysis, strain LGMF1631 was confirmed to belong to D. cf. heveae 1. Chemical assessment of the fungal strain LGMF1631 revealed one new seco-dihydroisocoumarin [cladosporin B (1)] along with six other related, already known dihydroisocoumarin derivatives and one monoterpene [(-)-(1S,2R,3S,4R)-p-menthane-1,2,3-triol (8)]. Among the isolated metabolites, compound 5 drastically reduced the growth of both phytopathogens in vitro and completely inhibited the development of CBS and PFD in citrus fruits and flowers. In addition, compound 5 did not show toxicity against human cancer cell lines or citrus leaves, at concentrations higher than used for the inhibition of the phytopathogens, suggesting the potential use of (-)-(3R,4R)-cis-4-hydroxy-5-methylmellein (5) to control citrus diseases.


Assuntos
Ascomicetos/efeitos dos fármacos , Citrus/microbiologia , Fungicidas Industriais/farmacologia , Isocumarinas/farmacologia , Saccharomycetales/química , Ascomicetos/fisiologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/fisiologia , Fabaceae/microbiologia , Frutas/microbiologia , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Isocumarinas/química , Isocumarinas/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação
3.
Chembiochem ; 21(7): 952-957, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621997

RESUMO

Herein we describe the ability of the permissive glycosyltransferase (GT) OleD Loki to convert a diverse set of >15 histone deacetylase (HDAC) inhibitors (HDACis) into their corresponding hydroxamate glycosyl esters. Representative glycosyl esters were subsequently evaluated in assays for cancer cell line cytotoxicity, chemical and enzymatic stability, and axolotl embryo tail regeneration. Computational substrate docking models were predictive of enzyme-catalyzed turnover and suggest certain HDACis may form unproductive, potentially inhibitory, complexes with GTs.

4.
J Nat Prod ; 82(12): 3469-3476, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31833370

RESUMO

We report the isolation and characterization of three new nybomycins (nybomycins B-D, 1-3) and six known compounds (nybomycin, 4; deoxynyboquinone, 5; α-rubromycin, 6; ß-rubromycin, 7; γ-rubromycin, 8; and [2α(1E,3E),4ß]-2-(1,3-pentadienyl)-4-piperidinol, 9) from the Rock Creek (McCreary County, KY) underground coal mine acid reclamation site isolate Streptomyces sp. AD-3-6. Nybomycin D (3) and deoxynyboquinone (5) displayed moderate (3) to potent (5) cancer cell line cytotoxicity and displayed weak to moderate anti-Gram-(+) bacterial activity, whereas rubromycins 6-8 displayed little to no cancer cell line cytotoxicity but moderate to potent anti-Gram-(+) bacterial and antifungal activity. Assessment of the impact of 3 or 5 cancer cell line treatment on 4E-BP1 phosphorylation, a predictive marker of ROS-mediated control of cap-dependent translation, also revealed deoxynyboquinone (5)-mediated downstream inhibition of 4E-BP1p. Evaluation of 1-9 in a recently established axolotl embryo tail regeneration assay also highlighted the prototypical telomerase inhibitor γ-rubromycin (8) as a new inhibitor of tail regeneration. Cumulatively, this work highlights an alternative nybomycin production strain, a small set of new nybomycin metabolites, and previously unknown functions of rubromycins (antifungal activity and inhibition of tail regeneration) and also provides a basis for revision of the previously proposed nybomycin biosynthetic pathway.


Assuntos
Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Estrutura Molecular , Quinolonas/química , Quinolonas/metabolismo , Quinolonas/farmacologia , Análise Espectral/métodos
5.
Nat Prod Res ; : 1-11, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429299

RESUMO

Boshramycinones A-C (1-3), three new anthracyclinones, were isolated from the culture broth of the marine-derived Streptomyces sp. Mei 16-1,2 together with 2-acetyl-1,8-dihydroxy-3-methyl-anthraquinone (4) and bafilomycins B1, B2, and C1-amide. The isolated compounds were identified by NMR spectroscopy and mass spectrometry, the absolute configuration of 3 was determined by comparison of experimental and ab initio-calculated chiroptical data. The antimicrobial activity of the bacterial extract and the isolated compounds were assayed using a set of microorganisms, and cytotoxic activities were determined against 36 human cancer cell lines.

6.
Fitoterapia ; 138: 104273, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31344395

RESUMO

Endophytic fungi have been considered a rich source for bioactive secondary metabolites with novel chemical structures. A high diverse group of endophytes, isolated from different medicinal plants, belongs to the genus Diaporthe. In a previously study performed by our group the crude extract of strain LGMF1583 showed considerable antibacterial activity mainly against Gram-negative bacteria. Based on ITS phylogeny analysis, strain LGMF1583 was identified as belonging to Diaporthe genus and may represent a new species. In the present study, we described the new species Diporthe vochysiae based on multilocus phylogeny analysis and morphological characteristics. The species name refers to the host, from which strain LGMF1583 was isolated, the medicinal plant Vochysia divergens. In view of the biotechnological potential of strain LGMF1583, we have also characterized the secondary metabolites produced by D. vochysiae. Chemical assessment of the D. vochysiae LGMF1583 revealed two new carboxamides, vochysiamides A (1) and B (2), in addition to the known metabolite, 2,5-dihydroxybenzyl alcohol (3). In the biological activity analysis, vochysiamide B (2) displayed considerable antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae (KPC), a producer of carbapenemases, MIC of 80 µg/mL. Carbapenemases are considered a major antimicrobial resistance threat, and infections caused by KPC have been considered a public health problem worldwide, and new compounds with activity against this bacterium are nowadays even more required.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Ascomicetos/química , Myrtales/microbiologia , Plantas Medicinais/microbiologia , Amidas/isolamento & purificação , Antibacterianos/isolamento & purificação , Ascomicetos/classificação , Brasil , Linhagem Celular Tumoral , Endófitos/química , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Estrutura Molecular , Filogenia
7.
J Nat Prod ; 82(6): 1686-1693, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31117525

RESUMO

The structures and bioactivities of three unprecedented fused 5-hydroxyquinoxaline/alpha-keto acid amino acid metabolites (baraphenazines A-C, 1-3), two unique diastaphenazine-type metabolites (baraphenazines D and E, 4 and 5) and two new phenazinolin-type (baraphenazines F and G, 6 and 7) metabolites from the Himalayan isolate Streptomyces sp. PU-10A are reported. This study highlights the first reported bacterial strain capable of producing diastaphenazine-type, phenazinolin-type, and izumiphenazine A-type metabolites and presents a unique opportunity for the future biosynthetic interrogation of late-stage phenazine-based metabolite maturation.


Assuntos
Antibacterianos/metabolismo , Fenazinas/metabolismo , Quinoxalinas/química , Streptomyces/química , Antibacterianos/química , Estrutura Molecular , Fenazinas/química
8.
J Nat Prod ; 82(4): 870-877, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30907593

RESUMO

Karamomycins A-C (2-4), the first natural 2-naphthalen-2-yl-thiazole derivatives, were isolated along with a plausible precursor molecule, 1-hydroxy-4-methoxy-2-naphthoic acid (1), uracil, 1-acetyl-ß-carboline, and actinomycin C2 from the culture broth of the terrestrial actinomycete strain GW58/450, identified as Nonomuraea endophytica. These compounds were characterized by analysis of their NMR and mass spectrometry (MS) data; the absolute configurations of 2 and 4 were determined by comparison of 13C NMR, NOESY, and circular dichroism (CD) spectra with density functional theory (DFT)-calculated data. In karamomycin C (4), the thiazole of 2 is connected to an unusual iminothiazolo[4,3- c][1,4]thiazepinone, for which we proposed a biosynthetic origin from two cysteine residues. It is closely related to ulbactin F; however, the heterocycle is enantiomeric to the latter and connected to phenol instead of 4-methoxy-1-naphthol. Karamomycins A (2) and C (4) were cytotoxic.


Assuntos
Actinobacteria/química , Produtos Biológicos/isolamento & purificação , Naftalenos/isolamento & purificação , Tiazóis/isolamento & purificação , Anti-Infecciosos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Dicroísmo Circular , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectrometria de Massas , Estrutura Molecular , Naftalenos/química , Naftalenos/farmacologia , Ressonância Magnética Nuclear Biomolecular , Tiazóis/química , Tiazóis/farmacologia
9.
J Antibiot (Tokyo) ; 72(5): 306-310, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792517

RESUMO

The isolation and structure elucidation of one new fungal metabolite, phenguignardic acid butyl ester (1a), and four previously reported metabolites (1b, 2a, 3-4) from the citrus phytopathogen Phyllosticta citricarpa LGMF06 are described. The new dioxolanone phenguignardic acid butyl ester (1a) had low phytotoxic activity in citrus leaves and fruits (at dose of 100 µg), and its importance as virulence factor in citrus black spot disease needs to be further addressed. Beside the phytotoxic analysis, we also evaluated the antibacterial (against methicillin sensitive and resistant Staphylococcus aureus) and cytotoxic (A549 non-small cell lung cancer, PC3 prostate cancer and HEL 299 normal epithelial lung) activities of the isolated compounds, which revealed that compounds 1a, 1b and 2a were responsible for the antibacterial activity of this strain.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Ascomicetos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citrus/microbiologia , Humanos , Estrutura Molecular , Doenças das Plantas/microbiologia
10.
BMC Microbiol ; 19(1): 49, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795744

RESUMO

BACKGROUND: Actinobacteria are famous for the production of unique secondary metabolites that help in controlling the continuously emerging drug resistance all over the globe. This study aimed at the investigation of an extreme environment the Cholistan desert, located in southern Punjab, Pakistan, for actinobacterial diversity and their activity against methicillin resistant Staphylococcus aureus (MRSA). The Cholistan desert is a sub-tropical and arid ecosystem with harsh environment, limited rainfall and low humidity. The 20 soil and sand samples were collected from different locations in the desert and the actinobacterial strains were selectively isolated. The isolated strains were identified using a polyphasic taxonomic approach including morphological, biochemical, physiological characterization, scanning electron microscopy (SEM) and by 16S rRNA gene sequencing. RESULTS: A total of 110 desert actinobacterial strains were recovered, which were found to be belonging to 3 different families of the order Actinomycetales, including the family Streptomycetaceae, family Pseudonocardiaceae and the family Micrococcaceae. The most frequently isolated genus was Streptomyces along with the genera Pseudonocardia and Arthrobacter. The isolated strains exhibited promising antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA) with zone of inhibition in the range of 9-32 mm in antimicrobial screening assays. The chemical profiling by thin layer chromatography, HPLC-UV/Vis and LC-MS analysis depicted the presence of different structural classes of antibiotics. CONCLUSION: The study revealed that Cholistan desert harbors immense actinobacterial diversity and most of the strains produce structurally diverse bioactive secondary metabolites, which are a promising source of novel antimicrobial drug candidates.


Assuntos
Actinobacteria/química , Actinobacteria/classificação , Antibacterianos/farmacologia , Actinobacteria/fisiologia , Antibacterianos/isolamento & purificação , DNA Bacteriano/genética , Clima Desértico , Ecossistema , Variação Genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Paquistão , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo , Esporos Bacterianos/classificação
11.
Cell Chem Biol ; 26(3): 366-377.e12, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30661989

RESUMO

Peroxiredoxin 1 (Prx1) and glutaredoxin 3 (Grx3) are two major antioxidant proteins that play a critical role in maintaining redox homeostasis for tumor progression. Here, we identify the prototypical pyranonaphthoquinone natural product frenolicin B (FB) as a selective inhibitor of Prx1 and Grx3 through covalent modification of active-site cysteines. FB-targeted inhibition of Prx1 and Grx3 results in a decrease in cellular glutathione levels, an increase of reactive oxygen species (ROS), and concomitant inhibition of cancer cell growth, largely by activating the peroxisome-bound tuberous sclerosis complex to inhibit mTORC1/4E-BP1 signaling axis. FB structure-activity relationship studies reveal a positive correlation between inhibition of 4E-BP1 phosphorylation, ROS-mediated cancer cell cytotoxicity, and suppression of tumor growth in vivo. These findings establish FB as the most potent Prx1/Grx3 inhibitor reported to date and also notably highlight 4E-BP1 phosphorylation status as a potential predictive marker in response to ROS-based therapies in cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Glutarredoxinas/metabolismo , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutarredoxinas/antagonistas & inibidores , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Naftoquinonas/química , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peroxirredoxinas/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo
12.
Folia Microbiol (Praha) ; 64(3): 453-460, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30565048

RESUMO

The citrus black spot (CBS), caused by Phyllosticta citricarpa, is one of the most important citrus diseases in subtropical regions of Africa, Asia, Oceania, and the Americas, and fruits with CBS lesions are still subject to quarantine regulations in the European Union. Despite the high application of fungicides, the disease remains present in the citrus crops of Central and South America. In order to find alternatives to help control CBS and reduce the use of fungicides, we explored the antifungal potential of endophytic actinomycetes isolated from the Brazilian medicinal plant Vochysia divergens found in the Pantanal biome. Two different culture media and temperatures were selected to identify the most efficient conditions for the production of active secondary metabolites. The metabolites produced by strain Microbacterium sp. LGMB471 cultured in SG medium at 36 °C considerably inhibited the development of P. citricarpa. Three isoflavones and five diketopiperazines were identified, and the compounds 7-O-ß-D-glucosyl-genistein and 7-O-ß-D-glucosyl-daidzein showed high activity against P. citricarpa, with the MIC of 33 µg/mL and inhibited the production of asexual spores of P. citricarpa on leaves and citrus fruits. Compounds that inhibit conidia formation may be a promising alternative to reduce the use of fungicides in the control of CBS lesions, especially in regions where sexual reproduction does not occur, as in the USA. Our data suggest the use of Microbacterium sp. LGMB471 or its metabolites as an ecological alternative to be used in association with the fungicides for the control of CBS disease.


Assuntos
Actinomycetales/química , Ascomicetos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Ásia , Brasil , Citrus/microbiologia , Meios de Cultura , Dicetopiperazinas/isolamento & purificação , Dicetopiperazinas/farmacologia , Fungicidas Industriais/isolamento & purificação , Isoflavonas/isolamento & purificação , Isoflavonas/farmacologia , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Metabolismo Secundário , Esporos Fúngicos/efeitos dos fármacos , Estados Unidos
13.
J Nat Prod ; 81(11): 2560-2566, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30418763

RESUMO

The isolation and structure elucidation of four new naturally occurring amino-nucleoside [puromycins B-E (1-4)] metabolites from a Himalayan isolate ( Streptomyces sp. PU-14-G, isolated from the Bara Gali region of northern Pakistan) is reported. Consistent with prior reports, comparative antimicrobial assays revealed the need for the free 2″-amine for anti-Gram-positive bacteria and antimycobacterial activity. Similarly, comparative cancer cell line cytotoxicity assays highlighted the importance of the puromycin-free 2″-amine and the impact of 3'-nucleoside substitution. These studies extend the repertoire of known naturally occurring puromycins and their corresponding SAR. Notably, 1 represents the first reported naturally occurring bacterial puromycin-related metabolite with a 3'- N-amino acid substitution that differs from the 3'- N-tyrosinyl of classical puromycin-type natural products. This discovery suggests the biosynthesis of 1 in Streptomyces sp. PU-14G may invoke a uniquely permissive amino-nucleoside synthetase and/or multiple synthetases and sets the stage for further studies to elucidate, and potentially exploit, new biocatalysts for puromycin chemoenzymatic diversification.


Assuntos
Nucleosídeos/metabolismo , Puromicina/química , Puromicina/isolamento & purificação , Streptomyces/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium/efeitos dos fármacos , Paquistão , Puromicina/biossíntese , Puromicina/farmacologia
14.
Folia Microbiol (Praha) ; 63(4): 499-505, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29497981

RESUMO

Antibiotic-resistant bacteria have been observed with increasing frequency over the past decades, driving the search for new drugs and stimulating the interest in natural products sources. Endophytic fungi from medicinal plants represent a great source of novel bioactive compounds useful to pharmaceutical and agronomical purposes. Diaporthe terebinthifolii is an endophytic species isolated from Schinus terebinthifolius, a plant used in popular medicine for several health problems. The strain D. terebinthifolii LGMF907 was previously reported by our group to produce secondary metabolites with biological activity against phytopathogens. Based on these data, strain LGMF907 was chosen for bioprospecting against microorganisms of clinical importance and for characterization of major secondary metabolites. In this study, different culture conditions were evaluated and the biological activity of this strain was expanded. The crude extracts demonstrated high antibacterial activity against Escherichia coli, Micrococcus luteus, Saccharomyces cerevisiae, methicillin-sensitive Staphylococcus aureus, and methicillin-resistant S. aureus. The compounds diaporthin and orthosporin were characterized and also showed activity against the clinical microorganisms evaluated. This study discloses the first isolation of diaporthin and orthosporin from D. terebinthifolii, and revealed the potential of this endophytic fungus to produce secondary metabolites with antimicrobial activity.


Assuntos
Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bioprospecção , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomycetales/metabolismo , Anti-Infecciosos/química , Meios de Cultura , Endófitos/química , Endófitos/metabolismo , Escherichia coli/efeitos dos fármacos , Fermentação , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium/efeitos dos fármacos , Saccharomycetales/química , Staphylococcus aureus/efeitos dos fármacos
15.
Sci Rep ; 8(1): 3122, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449610

RESUMO

Microorganisms associated with plants are highly diverse and can produce a large number of secondary metabolites, with antimicrobial, anti-parasitic and cytotoxic activities. We are particularly interested in exploring endophytes from medicinal plants found in the Pantanal, a unique and widely unexplored wetland in Brazil. In a bio-prospecting study, strains LGMF1213 and LGMF1215 were isolated as endophytes from Vochysia divergens, and by morphological and molecular phylogenetic analyses were characterized as Phaeophleospora vochysiae sp. nov. The chemical assessment of this species reveals three major compounds with high biological activity, cercoscosporin (1), isocercosporin (2) and the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone (3). Besides the isolation of P. vochysiae as endophyte, the production of cercosporin compounds suggest that under specific conditions this species causes leaf spots, and may turn into a pathogen, since leaf spots are commonly caused by species of Cercospora that produce related compounds. In addition, the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone showed considerable antimicrobial activity and low cytotoxicity, which needs further exploration.


Assuntos
Bactérias/isolamento & purificação , Myrtales/metabolismo , Myrtales/microbiologia , Antibacterianos/metabolismo , Anti-Infecciosos/metabolismo , Ascomicetos/metabolismo , Bactérias/metabolismo , Brasil , Endófitos/metabolismo , Magnoliopsida/metabolismo , Magnoliopsida/microbiologia , Testes de Sensibilidade Microbiana , Perileno/análogos & derivados , Filogenia , Plantas Medicinais/metabolismo
16.
Front Microbiol ; 8: 1642, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932210

RESUMO

Endophytic actinomycetes from medicinal plants produce a wide diversity of secondary metabolites (SM). However, to date, the knowledge about endophytes from Brazil remains scarce. Thus, we analyzed the antimicrobial potential of 10 actinomycetes isolated from the medicinal plant Vochysia divergens located in the Pantanal sul-mato-grossense, an unexplored wetland in Brazil. Strains were classified as belonging to the Aeromicrobium, Actinomadura, Microbacterium, Microbispora, Micrococcus, Sphaerisporangium, Streptomyces, and Williamsia genera, through morphological and 16S rRNA phylogenetic analyzes. A susceptibility analysis demonstrated that the strains were largely resistant to the antibiotics oxacillin and nalidixic acid. Additionally, different culture media (SG and R5A), and temperatures (28 and 36°C) were evaluated to select the best culture conditions to produce the active SM. All conditions were analyzed for active metabolites, and the best antibacterial activity was observed from metabolites produced with SG medium at 36°C. The LGMB491 (close related to Aeromicrobium ponti) extract showed the highest activity against methicillin-resistant Staphylococcus aureus (MRSA), with a MIC of 0.04 mg/mL, and it was selected for SM identification. Strain LGMB491 produced 1-acetyl-ß-carboline (1), indole-3-carbaldehyde (2), 3-(hydroxyacetyl)-indole (4), brevianamide F (5), and cyclo-(L-Pro-L-Phe) (6) as major compounds with antibacterial activity. In this study, we add to the knowledge about the endophytic community from the medicinal plant V. divergens and report the isolation of rare actinomycetes that produce highly active metabolites.

17.
J Nat Prod ; 80(4): 1141-1149, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28358212

RESUMO

The structures of 12 new "enantiomeric"-like abyssomicin metabolites (abyssomicins M-X) from Streptomyces sp. LC-6-2 are reported. Of this set, the abyssomicin W (11) contains an unprecedented 8/6/6/6 tetracyclic core, while the bicyclic abyssomicin X (12) represents the first reported naturally occurring linear spirotetronate. Metabolite structures were determined based on spectroscopic data and X-ray crystallography, and Streptomyces sp. LC-6-2 genome sequencing also revealed the corresponding putative biosynthetic gene cluster.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/isolamento & purificação , Compostos de Espiro/isolamento & purificação , Streptomyces/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Carvão Mineral , Cristalografia por Raios X , Conformação Molecular , Estrutura Molecular , Família Multigênica , Ressonância Magnética Nuclear Biomolecular , Compostos de Espiro/química , Streptomyces/genética
18.
Nat Chem Biol ; 13(4): 366-368, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166207

RESUMO

This study highlights the biochemical and structural characterization of the L-tryptophan C6 C-prenyltransferase (C-PT) PriB from Streptomyces sp. RM-5-8. PriB was found to be uniquely permissive to a diverse array of prenyl donors and acceptors including daptomycin. Two additional PTs also produced novel prenylated daptomycins with improved antibacterial activities over the parent drug.


Assuntos
Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Streptomyces/enzimologia , Modelos Moleculares , Estrutura Molecular , Especificidade por Substrato
19.
Angew Chem Int Ed Engl ; 56(11): 2994-2998, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28140487

RESUMO

Four cyclopentenone-containing ansamycin polyketides (mccrearamycins A-D), and six new geldanamycins (Gdms B-G, including new linear and mycothiol conjugates), were characterized as metabolites of Streptomyces sp. AD-23-14 isolated from the Rock Creek underground coal mine acid drainage site. Biomimetic chemical conversion studies using both simple synthetic models and Gdm D confirmed that the mccrearamycin cyclopentenone derives from benzilic acid rearrangement of 19-hydroxy Gdm, and thereby provides a new synthetic derivatization strategy and implicates a potential unique biocatalyst in mccrearamycin cyclopentenone formation. In addition to standard Hsp90α binding and cell line cytotoxicity assays, this study also highlights the first assessment of Hsp90α modulators in a new axolotl embryo tail regeneration (ETR) assay as a potential new whole animal assay for Hsp90 modulator discovery.


Assuntos
Carvão Mineral/microbiologia , Ciclopentanos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Streptomyces/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclopentanos/química , Ciclopentanos/isolamento & purificação , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Kentucky , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/isolamento & purificação , Conformação Molecular , Estereoisomerismo , Streptomyces/metabolismo
20.
Chembiochem ; 18(4): 363-367, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28067448

RESUMO

We describe the ability of an engineered glycosyltransferase (OleD Loki) to catalyze the N-glycosylation of tertiary-amine-containing drugs and trichostatin hydroxamate glycosyl ester formation. As such, this study highlights the first bacterial model catalyst for tertiary-amine N-glycosylation and further expands the substrate scope and synthetic potential of engineered OleDs. In addition, this work could open the door to the discovery of similar capabilities among other permissive bacterial glycosyltransferases.


Assuntos
Aminas/metabolismo , Glicosiltransferases/química , Ácidos Hidroxâmicos/química , Modelos Biológicos , Aminas/química , Catálise , Domínio Catalítico/fisiologia , Glicosilação , Glicosiltransferases/genética , Estrutura Molecular , Engenharia de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...