Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
1.
J Hazard Mater ; 422: 126926, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34449346

RESUMO

Water scarcity is a major threat to agriculture and humans due to over abstraction of groundwater, rapid urbanization and improper use in industrial processes. Industrial consumption of water is lower than the abstraction rate, which ultimately produces large amounts of wastewater such as from tannery industry containing high concentration of chromium (Cr). Chromium-contaminated tannery industry wastewater is used for irrigation of food crops, resulting in food safety and public health issues globally. In contrast to conventional treatment technologies, constructed wetlands (CWs) are considered as an eco-friendly technique to treat various types of wastewaters, although their application and potential have not been discussed and elaborated for Cr treatment of tannery wastewater. This review briefly describes Cr occurrence, distribution and speciation in aquatic ecosystems. The significance of wetland plant species, microorganisms, various bedding media and adsorbents have been discussed with a particular emphasis on the removal and detoxification of Cr in CWs. Also, the efficiency of various types of CWs is elaborated for advancing our understanding on Cr removal efficiency and Cr partitioning in various compartments of the CWs. The review covers important aspects to use CWs for treatment of Cr-rich tannery wastewater that are key to meet UN's Sustainable Development Goals.

2.
Chemosphere ; 287(Pt 1): 131956, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523459

RESUMO

Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Celulose , Sistemas de Liberação de Medicamentos , Engenharia Tecidual
3.
Sci Rep ; 11(1): 23182, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848729

RESUMO

Previous study has shown the antimicrobial activities of mucus protein extracted from Anabas testudineus. In this study, we are interested in characterizing the anticancer activity of the A. testudineus antimicrobial peptides (AMPs). The mucus was extracted, fractioned, and subjected to antibacterial activity testing to confirm the fish's AMPs production. The cytotoxic activity of each fraction was also identified. Fraction 2 (F2), which shows toxicity against MCF7 and MDA-MB-231 were sent for peptide sequencing to identify the bioactive peptide. The two peptides were then synthetically produced and subjected to cytotoxic assay to prove their efficacy against cancer cell lines. The IC50 for AtMP1 against MCF7 and MDA-MB-231 were 8.25 ± 0.14 µg/ml and 9.35 ± 0.25 µg/ml respectively, while for AtMP2 it is 5.89 ± 0.14 µg/ml and 6.97 ± 0.24 µg/ml respectively. AtMP1 and AtMP2 treatment for 48 h induced breast cancer cell cycle arrest and apoptosis by upregulating the p53, which lead to upregulate pro-apoptotic BAX gene and downregulate the anti-apoptotic BCL-2 gene, consequently, trigger the activation of the caspase-3. This interaction was supported by docking analysis (QuickDBD, HPEPDOCK, and ZDOCK) and immunoprecipitation. This study provided new prospects in the development of highly effective and selective cancer therapeutics based on antimicrobial peptides.

4.
Nano Converg ; 8(1): 37, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851459

RESUMO

Additively manufactured nano-MEH systems are widely used to harvest energy from renewable and sustainable energy sources such as wind, ocean, sunlight, raindrops, and ambient vibrations. A comprehensive study focusing on in-depth technology evolution, applications, problems, and future trends of specifically 3D printed nano-MEH systems with an energy point of view is rarely conducted. Therefore, this paper looks into the state-of-the-art technologies, energy harvesting sources/methods, performance, implementations, emerging applications, potential challenges, and future perspectives of additively manufactured nano-mechanical energy harvesting (3DP-NMEH) systems. The prevailing challenges concerning renewable energy harvesting capacities, optimal energy scavenging, power management, material functionalization, sustainable prototyping strategies, new materials, commercialization, and hybridization are discussed. A novel solution is proposed for renewable energy generation and medicinal purposes based on the sustainable utilization of recyclable municipal and medical waste generated during the COVID-19 pandemic. Finally, recommendations for future research are presented concerning the cutting-edge issues hurdling the optimal exploitation of renewable energy resources through NMEHs. China and the USA are the most significant leading forces in enhancing 3DP-NMEH technology, with more than 75% contributions collectively. The reported output energy capacities of additively manufactured nano-MEH systems were 0.5-32 mW, 0.0002-45.6 mW, and 0.3-4.67 mW for electromagnetic, piezoelectric, and triboelectric nanogenerators, respectively. The optimal strategies and techniques to enhance these energy capacities are compiled in this paper.

5.
Anim Biosci ; 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34727645

RESUMO

Objective: This study aimed to determine the effect of different cooling sessions as a water conservation strategy on physiological, and production responses and welfare in Holstein Friesian cows during subtropical summer in Pakistan. Methods: Twenty-one cows were subjected to three cooling sessions in a completely randomized design. The treatments were: 1) 11 hours continuous cooling with sprinklers - Control (CNT), 2) Four cooling sessions (4CS), and 3) Two cooling sessions (2CS). The CNT represented the practices of the commercial dairy farms in the area, while the other cooling sessions were used as water reduction strategies. Each cooling session lasted for 1 h with a 12 min cycle (3 min water on and 9 min off) with a sprinkler flow rate of 1.25 L/min. Results: The average temperature humidity index of the shed and the outside open area were 81.9 and 82.5, respectively. The results showed that both physiological responses were highest in the 2CS group followed by the CNT and the 4CS (P = 0.001). The CNT and 4CS groups had similar milk yield (P = 0.040). The 4CS group had more lying and eating times than the CNT and 2CS groups (P = 0.000). The cortisol level in the 2CS group was 2.0 and 2.2 µg/dL more than the CNT and the 4CS groups, respectively (P = 0.000). Conclusion: In conclusion, the 4CS was more efficient in cooling the cows and had better welfare, as it yielded similar milk yield, and better physiological responses than the CNT despite using 90% less water.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34795782

RESUMO

Citrus fruits such as oranges, grapefruits, lemons, limes, tangerines, and mandarins, whose production is increasing every year with the rise of consumer demand, are among the most popular fruits cultivated throughout the globe. Citrus genus belongs to the Rutaceae family and is known for its beneficial effects on health for centuries. These plant groups contain many beneficial nutrients and bioactive compounds. These compounds have antimicrobial, anticancer, antidiabetic, antiplatelet aggregation, and anti-inflammatory activities. Citrus waste, generated by citrus-processing industries in large amounts every year, has an important economic value due to richness of bioactive compounds. The present review paper has summarized the application and properties of Citrus and its waste in some fields such as food and drinks, traditional medicine practices, and recent advances in modern approaches towards pharmaceutical and nutraceutical formulations.

7.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768971

RESUMO

The intrinsic defense mechanisms of plants toward pathogenic bacteria have been widely investigated for years and are still at the center of interest in plant biosciences research. This study investigated the role of the AtbZIP62 gene encoding a transcription factor (TF) in the basal defense and systemic acquired resistance in Arabidopsis using the reverse genetics approach. To achieve that, the atbzip62 mutant line (lacking the AtbZIP62 gene) was challenged with Pseudomonas syringae pv. tomato (Pst DC3000) inoculated by infiltration into Arabidopsis leaves at the rosette stage. The results indicated that atbzip62 plants showed an enhanced resistance phenotype toward Pst DC3000 vir over time compared to Col-0 and the susceptible disease controls, atgsnor1-3 and atsid2. In addition, the transcript accumulation of pathogenesis-related genes, AtPR1 and AtPR2, increased significantly in atbzip62 over time (0-72 h post-inoculation, hpi) compared to that of atgsnor1-3 and atsid2 (susceptible lines), with AtPR1 prevailing over AtPR2. When coupled with the recorded pathogen growth (expressed as a colony-forming unit, CFU mL-1), the induction of PR genes, associated with the salicylic acid (SA) defense signaling, in part explained the observed enhanced resistance of atbzip62 mutant plants in response to Pst DC3000 vir. Furthermore, when Pst DC3000 avrB was inoculated, the expression of AtPR1 was upregulated in the systemic leaves of Col-0, while that of AtPR2 remained at a basal level in Col-0. Moreover, the expression of AtAZI (a systemic acquired resistance -related) gene was significantly upregulated at all time points (0-24 h post-inoculation, hpi) in atbzip62 compared to Col-0 and atgsnor1-3 and atsid2. Under the same conditions, AtG3DPH exhibited a high transcript accumulation level 48 hpi in the atbzip62 background. Therefore, all data put together suggest that AtPR1 and AtPR2 coupled with AtAZI and AtG3DPH, with AtAZI prevailing over AtG3DPH, would contribute to the recorded enhanced resistance phenotype of the atbzip62 mutant line against Pst DC3000. Thus, the AtbZIP62 TF is proposed as a negative regulator of basal defense and systemic acquired resistance in plants under Pst DC3000 infection.

8.
Environ Technol ; : 1-28, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821537

RESUMO

Poly(styrene-N-isopropylmethacrylamide-methacrylic acid) core-shell [P(SNM)CS] microgel particles were synthesized by seed mediated emulsion polymerization method. Silver nanoparticles were loaded into shell of P(SNM)CS microgels by in situ reduction of Ag+ ions. Synthesized core-shell microgels and hybrid core-shell microgels were characterized by using Fourier transformed infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), UV-Visible spectroscopy and Dynamic light scattering (DLS). Stability of Ag nanoparticles within P(SNM)CS system was also investigated over the time using UV-Visible spectroscopy. Catalytic properties of silver nanoparticles loaded microgel system [Ag-P(SNM)CS] were studied by reducing Eosin Y and Methylene blue with NaBH4 in water. The values of observed rate constant (kobs) were determined under different reaction conditions. The hybrid system was capable to degrade both dyes and may be used for degradation of several other toxic chemicals efficiently.

9.
Front Plant Sci ; 12: 755539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777433

RESUMO

Populus trichocarpa has been studied as a model poplar species through biomolecular approaches and was the first tree species to be genome sequenced. In this study, we employed a high throughput RNA-sequencing (RNA-seq) mediated leaf transcriptome analysis to investigate the response of four different Populus davidiana cultivars to drought stress. Following the RNA-seq, we compared the transcriptome profiles and identified two differentially expressed genes (DEGs) with contrasting expression patterns in the drought-sensitive and tolerant groups, i.e., upregulated in the drought-tolerant P. davidiana groups but downregulated in the sensitive group. Both these genes encode a 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme required for abscisic acid (ABA) biosynthesis. The high-performance liquid chromatography (HPLC) measurements showed a significantly higher ABA accumulation in the cultivars of the drought-tolerant group following dehydration. The Arabidopsis nced3 loss-of-function mutants showed a significantly higher sensitivity to drought stress, ~90% of these plants died after 9 days of drought stress treatment. The real-time PCR analysis of several key genes indicated a strict regulation of drought stress at the transcriptional level in the P. davidiana drought-tolerant cultivars. The transgenic P. davidiana NCED3 overexpressing (OE) plants were significantly more tolerant to drought stress as compared with the NCED knock-down RNA interference (RNAi) lines. Further, the NCED OE plants accumulated a significantly higher quantity of ABA and exhibited strict regulation of drought stress at the transcriptional level. Furthermore, we identified several key differences in the amino acid sequence, predicted structure, and co-factor/ligand binding activity of NCED3 between drought-tolerant and susceptible P. davidiana cultivars. Here, we presented the first evidence of the significant role of NCED genes in regulating ABA-dependent drought stress responses in the forest tree P. davidiana and uncovered the molecular basis of NCED3 evolution associated with increased drought tolerance.

10.
Microsc Res Tech ; 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34843150

RESUMO

The anatomical variations of two plants from the Nyctaginaceae family, Bougainvillea spectabilis and Bougainvillea glabra, were studied using light and scanning electron microscopy methods in this work. Bougainvillea is a dicotyledonous with defensive traits that can withstand extreme (hot and dry) settings; according to the findings, crystal inclusions in cells, woody spines, and an abnormal development pattern are all features that help them survive against predators and are unique to this species. The Bougainvillea plant's leaves are arranged in simple pattern, alternate to each other along stem having an undulate leaves edge and an oval form. The xylem and phloem, palisade, parenchyma midrib, spongy mesophyll, raphide crystal bundles, and trichomes were all visible when bracts and leaves were transversally sectioned and dyed with toluidine blue O (TBO). The presence of crystals was confirmed by a detailed examination of the transverse leaves by using bright-field and cross-polarizing microscopy. Dissecting microscopic examination showed that all the leaves revealed leaves venation pattern that had midvein, lateral veins areoles, and trichomes. Although trichomes have been identified on both sides, a closer look at a cleaned leaf dyed with TBO showed multicellular abundant trichomes on adaxial surface. Stomata complexes were typically found on the abaxial surface of the leaf according to epidermal peels. Present studies also showed that on adaxial side, stomata were lesser in number or were absent and also showed that the morphologies of the pavement cells on the adaxial and abaxial sides of the leaf differed.

11.
BMC Complement Med Ther ; 21(1): 248, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600509

RESUMO

BACKGROUND: Edible oils have proven health benefits in the prevention and treatment of various disorders since the establishment of human era. This study was aimed to appraise neuropharmacological studies on the commonly used edible oils including Cinnamomum verum (CV), Zingiber officinale (ZO) and Cuminum cyminum (CC). METHODS: The oils were analyzed via GC-MS for identifications of bioactive compounds. Anti-radicals capacity of the oils were evaluated via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals scavenging assays. The samples were also tested against two important acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which are among the important drug targets in Alzheimer's disease. Lineweaver-Burk plots were constructed for enzyme inhibition studies which correspond to velocity of enzymes (Vmax) against the reciprocal of substrate concentration (Km) in the presence of test samples and control drugs following Michaelis-Menten kinetics. Docking studies on AChE target were also carried out using Molecular Operating Environment (MOE 2016.0802) software. RESULTS: (Gas chromatography-mass spectrometry GC-MS) analysis revealed the presence of thirty-four compounds in Cinnamon oil (Cv.Eo), fourteen in ginger oil (Zo.Eo) and fifty-six in cumin oil (Cc.Eo). In the antioxidant assays, Cv.Eo, Zo.Eo and Cc.Eo exhibited IC50 values of 85, 121, 280 µg/ml sequentially against DPPH radicals. Whereas, in ABTS assay, Cv.Eo, Zo.Eo and Cc.Eo showed considerable anti-radicals potentials with IC50 values of 93, 77 and 271 µg/ml respectively. Furthermore, Cv.Eo was highly active against AChE enzyme with IC50 of 21 µg/ml. Zo.Eo and Cc.Eo exhibited considerable inhibitory activities against AChE with IC50 values of 88 and 198 µg/ml respectively. In BChE assay, Cv.Eo, Zo.Eo and Cc.Eo exhibited IC50 values of 106, 101 and 37 µg/ml respectively. Our results revealed that these oils possess considerable antioxidant and cholinesterase inhibitory potentials. As functional foods these oils can be effective remedy for the prevention and management of neurological disorders including AD. Synergistic effect of all the identified compounds was determined via binding energy values computed through docking simulations. Binding orientations showed that all the compounds interact with amino acid residues present in the peripheral anionic site (PAS) and catalytic anionic site (CAS) amino acid residues, oxyanion hole and acyl pocket via π-π stacking interactions and hydrogen bond interactions.

12.
Trop Anim Health Prod ; 53(5): 508, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34626253

RESUMO

Nanotechnology is the discipline and technology of small and specific things that are < 100 nm in size. Because of their extremely miniscule size, any changes in their chemical and physical structure may show higher reactivity and solubility than larger particles. Nanotechnology plays a vital role in every field of life. It is considered one of the most bleeding edge field of scientific research. It has already several applications in a myriad of disciplines while its application in the field of animal production and veterinary medicine is still experimental in nature. But, in recent years, the role of nanotechnology in the aforementioned fields of scientific inquiry has shown great progress. These days, nanotechnology has been employed to revolutionize drug delivery systems and diagnose atypical diseases. Applications of nanoparticle technology in the field of animal reproduction and development of efficacious vaccines have been at the forefront of scientific endeavors. Additionally, their impacts on meat and milk quality are also being judiciously inquired in recent decades. Veterinary nanotechnology has great potential to improve diagnosis and treatment, and provide new tools to this field. This review focuses on some noteworthy applications of nanoparticles in the field of animal production and their future perspectives.


Assuntos
Nanopartículas , Nanotecnologia , Animais , Sistemas de Liberação de Medicamentos/veterinária , Leite
13.
Anat Histol Embryol ; 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34687246

RESUMO

Ultrasonography, a non-invasive and useful technique, is used for the examination of Atlanto-occipital space structural visualization. The collection of cerebrospinal fluid is more accurate and easier under ultrasound-guided procedure. In this study, longitudinal and transverse views of the Atlanto-occipital space were scanned and their different structural dimensions were measured in sixty healthy Beetal goats. In longitudinal plane, gap between skin and arachnoidea ranged from 8.71 to 10.21 mm (mean ± SD, 9.76 ± 0.44 mm). Depth of the subarachnoid gap dorsal and ventral to the spinal cord ranged from 2.14 to 3.23 mm (mean ± SD, 2.81 ± 0.33mm) and from 6.09 to 7.68 (mean ± SD, 7.02 ± 0.45 mm) respectively. Spinal cord diameter varied from 3.76 to 5.26 mm (mean ± SD, 4.57 ± 0.44 mm) and entire dural sac diameter varied from 12.59 to 15.69 mm (mean ± SD, 14.37 ± 0.74 mm). The spinal cord can be seen only in longitudinal plane over a distance of 1.81 to 2.93 mm (mean ± SD, 2.46 ± 0.35 mm). While in the transverse plane, gap between the skin and arachnoidea ranged from 11.01 to 13.11 mm (mean ± SD, 12.39 ± 0.54 mm). Depth of the subarachnoid space dorsal and ventral to spinal cord varied from 5.05 to 6.13 mm (mean ± SD, 5.59 ± 0.34 mm) and 4.12 to 5.25 (mean ± SD, 4.65 ± 0.29 mm) respectively. Spinal cord diameter ranged from 4.45 to 5.90 mm (mean ± SD, 5.24 ± 0.44 mm) and entire dural sac diameter varied from 14.68 to 16.96 mm (mean ± SD, 15.58 ± 0.57 mm). These standard measurements will be the reference values in healthy Beetal goats. Cerebrospinal fluid was colourless with the quantity of 2-4 ml (mean ± SD, 3 ± 0.89 ml). It was neither turbid nor coagulate. The white blood cell count was 10/µl and red blood cells were not present. Furthermore, total protein and glucose were also measured, which ranged from 23.5 to 28 mg/dl (mean ± SD, 25.78 ± 2.32 mg/dl) and 38-50 mg/dl (mean ± SD, 43.33 ± 4.60 mg/dl) respectively. Ziehl-Neelsen Staining and gram staining were negative.

14.
Pharmaceutics ; 13(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34683925

RESUMO

Norfloxacin (NOR), widely employed as an anti-bacterial drug, has poor oral bioavailability. Nano based drug delivery systems are widely used to overcome the existing oral bioavailability challenges. Lipid-Polymer Hybrid Nanoparticles (LPHNs) exhibit the distinctive advantages of both polymeric and liposomes nanoparticles, while excluding some of their disadvantages. In the current study, NOR loaded LPHNs were prepared, and were solid amorphous in nature, followed by in vitro and in vivo evaluation. The optimized process conditions resulted in LPHNs with the acceptable particle size 121.27 nm, Polydispersity Index (PDI) of 0.214 and zeta potential of -32 mv. The addition of a helper lipid, oleic acid, and polymers, ethyl cellulose, substantially increased the encapsulation efficiency (EE%) (65% to 97%). In vitro study showed a sustained drug release profile (75% within 12 h) for NOR LPHNs. The optimized NOR LPHNs showed a significant increase (p < 0.05) in bioavailability compared to the commercial product. From the acute toxicity study, the LD50 value was found to be greater than 1600 mg/kg. The molecular modelling studies substantiated the experimental results with the best combination of polymers and surfactants that produced highly stable LPHNs. Therefore, LPHNs proved to be a promising system for the delivery of NOR, as well as for other antibiotics and hydrophobic drugs.

15.
Dose Response ; 19(4): 15593258211050491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690617

RESUMO

Sinusitis or rhinosinusitis is inflammation of the paranasal sinuses which can be due to autoimmune, allergy, and infection problems. Current study was aimed to evaluate the antibiofilm and antibacterial potential of different varieties of A sativum. Four different varieties (China white, China pink, Desi white, and Desi pink) were used and extracted with methanol and water. Results of antioxidant analysis of A sativum extracts showed that all varieties of garlic have considerable quantity of flavonoids with significant DPPH inhibition and reductive potential. Antibacterial activity of A sativum extracts was tested against different Gram negative and Gram-positive sinusitis isolates. All the sinusitis isolates were susceptible to both methanolic and aqueous extracts of different varieties of A sativum with least MIC values. Antibiofilm potential of extracts against sinusitis isolates was evaluated through crystal violet assay, and all extracts of A sativum were significantly effective against destruction of microbial biofilm. In summary, A sativum extracts possess effective antibacterial and antibiofilm activity against sinusitis isolates and can be utilized for prevention of drug resistance against sinusitis infections and further evaluation is necessary.

16.
Polymers (Basel) ; 13(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34641231

RESUMO

A series of xanthan gum/titanium dioxide-based polyurethane elastomers were synthesized through the prepolymer method by the step growth polymerization. In the present work, xanthan gum was used as a bioactive material, with TiO2 as a nanofiller. The structural characterization of newly prepared polyurethane samples was carried out with the help of Fourier Transform Infrared Spectroscopy. Thermogravimetric Analysis gave us the information about the thermal stability. Differential Scanning Calorimetry directs the thermal changes in the polyurethane samples. The Atomic Force Microscopy technique revealed that the degree of micro-phase separation increases by augmenting the % age of TiO2, which was further confirmed by X-Ray Diffraction results. XRD confirmed the crystallinity of the final sample at about 2θ = 20°. Antimicrobial activity determined through the Disc Diffusion Method, and the results indicated that the synthesized polyurethane have antimicrobial activity. The water absorption capability of the polyurethane samples showed that these polymer samples are hydrophilic in nature.

17.
Nat Prod Res ; : 1-5, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652246

RESUMO

The antidiarrheal effect of methanolic extract of Trillium govanianum Wall. ex D. Don (Melanthiaceae alt. Trilliaceae) was studied at doses of 12.5, 25, and 50 mg/kg in different animal models of diarrhea including castor oil (6 mL/kg), magnesium sulfate (2 gm/kg), sodium picosulfate (2 mL/kg) and lactitol (0.25 mL/kg). The antispasmodic effect of T. govanianum was studied on isolated rabbit's jejunum, using acetylcholine as tissue stabiliser and verapamil as calcium channel blocker. T. govanianum attenuated the diarrhea by producing a significant decrease in the number and weight of stool, and an increase in stool latency time. T. govanianum completely inhibited both spontaneous as well as high potassium induced contractions of isolated rabbit's jejunum, which was analogous to verapamil. Moreover, T. govanianum produced a right shift in calcium concentration response curve, confirming its calcium channel blocking activity. These findings provide scientific ground to its medicinal use in diarrhea and gut spasms.

18.
Microsc Res Tech ; 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528741

RESUMO

Present research work was carried out to clarify the variations among species of genus Paspalum morphologically and palynologically as this genus is taxonomically difficult due to having multiple similar morphologically overlapping characters which make it difficult to identify. Henceforth present research work was carried out to delimit taxa within the same genus by morphological and palynological tools through light microscopy (LM) and scanning electron microscopy (SEM). Both these tools are considered as the most useful taxonomic characters for taxonomically problematic genera. The results showed a lot of variations among morphological characters. In Paspalum dilatatum, the upper glume was ovate whereas in the other two species, the upper glume was elliptic. The upper glume apex found in P. dilatatum and Paspalum scrobiculatum was obtuse whereas in Paspalum distichum, upper glume apex was acute. Glume nerves showed variation in all three species. Paspalum distichum was 3 nerved, P. scrobiculatum was 5-7 nerved, and P. dilatatum was 5-9 nerved. All three species showed variation in lemma nerves. Paspalum scrobiculatum had 3 nerved lemma whereas in P. distichum 3-5 nerved and P. dilatatum 5-9 nerved lemma were present. In polar and equatorial view, pollen grains ranged from 25 (20-30) to 37.5 (30-45) µm. Paspalum distichum appeared to be the smallest in size whereas P. dilatatum was the largest. Exine thickness ranged from 0.75 (0.5-1) to 1.35 (1.2-1.5) µm. The higher value of pollen fertility was found in P. scrobiculatum as 87.69% and the lowest value was in P. distichum as 78.08%. Morphological keys were also given for correct identification.

19.
Front Pharmacol ; 12: 638628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483894

RESUMO

Background. Infertility is an emerging health issue for men. Comparative efficacy of different pharmacological interventions on male infertility is not clear. The aim of this review is to investigate the efficacy of various pharmacological interventions among men with idiopathic male infertility. All randomized control trials evaluating the effectuality of interventions on male infertility were included for network meta-analysis (NMA) from inception to 31 April 2020, systematically performed using STATA through the random effect model. The protocol was registered at PROSPERO (CRD42020152891). Results. The outcomes of interest were semen and hormonal parameters. Treatment effects (p < 0.05) were estimated through WMD at the confidence interval of 95%. Upon applying exclusion criteria, n=28 RCTs were found eligible for NMA. Results from NMA indicated that consumption of supplements increases sperm concentration levels [6.26, 95% CI 3.32, 9.21] in comparison to SERMs [4.97, 95% CI 1.61, 8.32], hormones [4.14, 95% CI 1.83, 6.46], and vitamins [0.15, 95% CI -20.86, 21.15)] with placebo, whereas the use of SERMs increased percentage sperm motility [6.69, 95% CI 2.38, 10.99] in comparison to supplements [6.46, 95% CI 2.57, 10.06], hormones [3.47, 95% CI 0.40, 6.54], and vitamins [-1.24, 95% CI -11.84, 9.43] with placebo. Consumption of hormones increased the sperm morphology [3.71, 95% CI, 1.34, 6.07] in contrast to supplements [2.22, 95% CI 0.12, 4.55], SERMs [2.21, 95% CI -0.78, 5.20], and vitamins [0.51, 95% CI -3.60, 4.62] with placebo. Supplements boosted the total testosterone levels [2.70, 95% CI 1.34, 4.07] in comparison to SERMs [1.83, 95% CI 1.16, 2.50], hormones [0.40, 95% CI -0.49, 1.29], and vitamins [-0.70, 95% CI -6.71, 5.31] with placebo. SERMs increase the serum FSH levels [3.63, 95% CI 1.48, 5.79] better than hormones [1.29, 95% CI -0.79, 3.36], vitamins [0.03, 95% CI -2.69, 2.76], and supplements [-4.45, 95% CI -7.15, -1.76] in comparison with placebo. Conclusion. This review establishes that all interventions had a significantly positive effect on male infertility. Statistically significant increased sperm parameters were noted in combinations of zinc sulfate (220 mg BID), clomiphene citrate (50 mg BID), and testosterone undecanoate and CoQ10; tamoxifen citrate and FSH were shown to improve the hormonal profile in infertile males.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34524606

RESUMO

Plant redox homeostasis governs the uptake, toxicity and tolerance mechanism of toxic trace elements and thereby elucidates the remediation potential of a plant. Moreover, plant toxicity/tolerance mechanisms control the trace element compartmentation in edible and non-edible plant organs as well as the associated health hazards. Therefore, it is imperative to unravel the cellular mechanism involved in trace element toxicity and tolerance. The present study investigated the toxicity and tolerance/detoxification mechanisms of four levels of arsenic (As(III): 0, 5, 25 and 125 µM) in Brassica oleracea under hydroponic cultivation. Increasing As levels significantly decreased the pigment contents (up to 68%) of B. oleracea. Plants under As stress showed an increase in H2O2 contents (up to 32%) in roots while a decrease (up to 72%) in leaves because As is mostly retained in plant roots, while less is translocated toward the shoot, as evident from the literature. Arsenic treatments caused lipid peroxidation both in the root and leaf cells. Against As-induced oxidative stress, B. oleracea plants mediated an increase in the activities of peroxidase and catalase. Contradictory, the ascorbate peroxidase and superoxide dismutase activities slightly decreased in the As-stressed plants. In conclusion and as evident from the literature data analysis, As exposure (especially high level, 125 µM) caused pigment toxicity and oxidative burst in B. oleracea. The ability of B. oleracea to tolerate As-induced toxicity greatly varied with applied treatment levels (As-125 being more toxic than lower levels), plant organ type (more toxicity in leaves than roots) and physiological response parameter (pigment contents more sensitive than other response variables). Moreover, the multivariate statistical analysis appeared to be a useful method to estimate plant response under stress and trace significant trends in the data set.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...