Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501956

RESUMO

KEY MESSAGE: Banana MaBZR1/2 interact with MaMPK14 to enhance the transcriptional inhibition of cell wall modifying genes including MaEXP2, MaPL2 and MaXET5. Fruit ripening and softening, the major attributes to perishability in fleshy fruits, are modulated by various plant hormones and gene expression. Banana MaBZR1/2, the central transcription factors of brassinosteroid (BR) signaling, mediate fruit ripening through regulation of ethylene biosynthesis, but their possible roles in fruit softening as well as the underlying mechanisms remain to be determined. In this work, we found that MaBZR1/2 directly bound to and repressed the promoters of several cell wall modifying genes such as MaEXP2, MaPL2 and MaXET5, whose transcripts were elevated concomitant with fruit ripening. Moreover, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that MaBZR1/2 physically interacted with a mitogen-activated protein kinase MaMPK14, and this interaction strengthened the MaBZR1/2-mediated transcriptional inhibitory abilities. Collectively, our study provides insight into the mechanism of MaBZR1/2 contributing to fruit ripening and softening, which may have potential for banana molecular improvement.

2.
Med Sci Monit ; 25: 6972-6979, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31527568

RESUMO

BACKGROUND Ginsenosides, including ginsenoside Rg3, are components of Panax ginseng C.A. Meyer (Araliaceae) used in traditional Chinese medicine. Long-term peritoneal dialysis induces peritoneal fibrosis that impairs ultrafiltration and is associated with epithelial-mesenchymal transition (EMT) of peritoneal cells. This study aimed to investigate the effects of ginsenoside Rg3 on EMT induced by transforming growth factor-ß1 (TGF-ß1) in HMrSV5 human peritoneal mesothelial cells. MATERIAL AND METHODS The cell counting kit-8 (CCK-8) assay measured HMrSV5 cell viability. The expression of EMT markers, E-cadherin, vimentin, and alpha-smooth muscle actin (alpha-SMA) were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The wound-healing assay determined cell migration. The S-phase of the cell cycle was assessed by 5-ethynyl-2'-deoxyuridine (EdU) labeling, and expression of phosphorylated AKT was measured by Western blot. The effect of ginsenoside Rg3 and the AKT activator SC79 on the TGF-ß1-induced EMT of HMrSV5 cells were evaluated. RESULTS Low concentration of ginsenoside Rg3 did not effect cell viability of HMrSV5 cells. TGF-ß1 treatment decreased the expression of E-cadherin, and increased the expression of vimentin and alpha-SMA and promoted cell migration of HMrSV5 cells. However, co-treatment of ginsenoside Rg3 and TGF-ß1 significantly reduced TGF-ß1-induced EMT in HMrSV5 cells. TGF-ß1 increased the phosphorylation of AKT and increased the expression of Smurf2. Ginsenoside Rg3 reduced TGF-ß1-induced activation of AKT and Smurf2. SC79 reversed the effects of ginsenoside Rg3 on TGF-ß1-induced EMT in HMrSV5 cells. CONCLUSIONS Ginsenoside Rg3 inhibited EMT induced by TGF-ß1 in HMrSV5 human peritoneal mesothelial cells by inhibiting the activation of AKT.

3.
CNS Neurosci Ther ; 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31429206

RESUMO

The International League Against Epilepsy (ILAE) defined drug-resistant epilepsy (DRE) that epilepsy seizure symptoms cannot be controlled with two well-tolerated and appropriately chosen antiepileptic drugs, whether they are given as monotherapy or in combination. According to the WHO reports, there is about 30%-40% of epilepsy patients belong to DRE. These patients need some treatments other than drugs, such as epilepsy surgery, and neuromodulation treatment. Traditional surgical approaches may be limited by the patient's clinical status, pathological tissue location, or overall prognosis. Thus, neuromodulation is an alternative choice to control their symptoms. Vagus nerve stimulation (VNS) is one of the neuromodulation methods clinically, which have been approved by the Food and Drug Administration (FDA). In this review, we systematically describe the clinical application, clinical effects, possible antiepileptic mechanisms, and future research directions of VNS for epilepsy.

4.
J Cell Physiol ; 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31389001

RESUMO

In vitro generation of hematopoietic stem cells from pluripotent stem cells (PSCs) can be regarded as novel therapeutic approaches for replacing bone marrow transplantation without immune rejection or graft versus host disease. To date, many different approaches have been evaluated in terms of directing PSCs toward different hematopoietic cell types, yet, low efficiency and no function restrict the further hematopoietic differentiation study, our research aims to develop a three dimension (3D) hematopoietic differentiation approach that serves as recapitulation of embryonic development in vitro to a degree of complexity not achievable in a two dimension culture system. We first found that mouse PSCs could be efficiently induced to hematopoietic differentiation with an expression of hematopoietic makers, such as c-kit, CD41, and CD45 within self-assembling peptide hydrogel. Colony-forming cells assay results suggested mouse PSCs (mPSCs) could be differentiated into multipotential progenitor cells and 3D induction system derived hematopoietic colonies owned potential of differentiating into lymphocyte cells. In addition, in vivo animal transplantation experiment showed that mPSCs (CD45.2) could be embedded into nonobese diabetic/severe combined immunodeficiency mice (CD45.1) with about 3% engraftment efficiency after 3 weeks transplantation. This study demonstrated that we developed the 3D induction approach that could efficiently promote the hematopoietic differentiation of mPSCs in vitro and obtained the multipotential progenitors that possessed the short-term engraftment potential.

5.
Fitoterapia ; 138: 104341, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31470066

RESUMO

The biotransformation of huperzine A (hupA), one of the characteristic bioactive constituents of the medicinal plant Huperzia serrata, by a fungal endophyte of the host plant was studied. Two previously undescribed compounds 1-2, along with a known analog 8α,15α-epoxyhuperzine A (3), were isolated and identified. The structures of all the isolates were established by spectroscopic methods including NMR, MS, IR, and UV spectra. In particular, the absolute configurations of 1 and 2 were elucidated by CD spectra comparison and theoretic NOE strength calculation. In the LPS-induced neuro-inflammation injury assay, 1-3 exhibited moderate neuroprotective activity by increasing the viability of U251 cell lines with EC50 values of 35.3 ±â€¯0.9, 32.1 ±â€¯0.9, and 50.3 ±â€¯0.8 nM, respectively.

6.
Plant Cell Physiol ; 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340013

RESUMO

Linoleic acid (LA; C18:2) and α-linolenic acid (ALA; C18:3) are two essential unsaturated fatty acids that play indispensable roles in maintaining membrane integrity in cold stress, and ω-3 fatty acid desaturases (FADs) are responsible for the transformation of LA into ALA. However, how this process is regulated at transcriptional and post-transcriptional levels remains largely unknown. In this study, a banana fruit MYB transcription factor MaMYB4 was identified and found to target several ω-3 MaFADs including MaFAD3-1, MaFAD3-3, MaFAD3-4, and MaFAD3-7, and repress their transcription. Intriguingly, the acetylation levels of histone H3 and H4 in the promoters of ω-3 MaFADs were elevated in response to cold stress, which was correlated with the enhancement in the transcription levels of ω-3 MaFADs and the ratio of ALA/LA. Moreover, a histone deacetylase MaHDA2 physically interacted with MaMYB4, thereby leading to the enhanced MaMYB4-mediated transcriptional repression of ω-3 MaFADs. Collectively, these data demonstrate that MaMYB4 might recruit MaHDA2 to repress the transcription of ω-3 MaFADs by affecting their acetylation levels, thus modulating fatty acid biosynthesis. Our findings provided new molecular insights into the regulatory mechanisms of fatty acid biosynthesis in cold stress in fruits.

7.
In Vivo ; 33(4): 1193-1201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31280209

RESUMO

BACKGROUND/AIM: Our current study aimed to determine the molecular mechanisms of citronellol-induced cell death and ROS accumulation in non-small cell lung cancer (NCI-H1299 cells) and also compare the anticancer effects of citronellol and EOPC. MATERIALS AND METHODS: ROS measurement and western blotting were performed to detect whether citronellol can induce necroptosis in vitro. Besides, we performed an in vivo analysis of tumourigenesis inhibition by citronellol treatment in BALB/c (nu/nu) nude mice. RESULTS: Necroptosis occured by up-regulating TNF-α, RIP1/RIP3 activities, and down-regulating caspase-3/caspase-8 activities after citronellol treatment in NCI-H1299 cells. Citronellol also resulted in a biphasic increase in ROS production at 1 h and at 12 h in NCI-H1299 cells. Xenograft model experiments showed that citronellol could effectively inhibit subcutaneous tumours produced 4 weeks after intraperitoneal injection of NCI-H1299 in BALB/c nude mice. CONCLUSION: Citronellol induced necroptosis of NCI-H1299 cells via TNF-α pathway and ROS accumulation.

8.
Pediatr Infect Dis J ; 38(9): e235-e236, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31261352
9.
Bioresour Technol ; 289: 121720, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31271916

RESUMO

Haematococcus pluvialis is a main biological resource for the antioxidant astaxanthin production, however, potential modulators and molecular mechanisms underpinning astaxanthin accumulation remain largely obscured. We discovered that provision of ethanol (0.4%) significantly triggered the cellular astaxanthin content up to 3.85% on the 4th day of treatment. Amongst, 95% of the accumulated astaxanthin was esterified, particularly enriched with monoesters. Ultrastructural analysis revealed that ethanol altered cell wall structure and physiological properties. Antioxidant analyses revealed that astaxanthin accumulation offset the ethanol induced oxidative stress. Ethanol treatment reduced carbohydrates while increased lipids and jasmonic acid production. Transcriptomic analysis uncovered that ethanol orchestrated the expression of crucial genes involved in carotenogenesis, e.g. PSY, BKT and CRTR-b were significantly upregulated. Moreover, methyl jasmonic acid synthesis was induced and played a major role in regulating the carotenogenic genes. The findings uncovered the novel viewpoint in the intricate transcriptional regulatory mechanisms of astaxanthin biosynthesis.


Assuntos
Clorofíceas/metabolismo , Ciclopentanos/metabolismo , Etanol/farmacologia , Oxilipinas/metabolismo , Clorofíceas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Xantofilas/biossíntese
10.
Chem Biodivers ; 16(8): e1900299, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31287220

RESUMO

The biotransformation of huperzine B (hupB), one of the characteristic bioactive constituents of the medicinal plant Huperzia serrata, by a fungal endophyte of the host plant was studied. One new compound, 8α,15α-epoxyhuperzine B (1), along with two known oxygenated hupB analogs, 16-hydroxyhuperzine B (2) and carinatumin B (3), was isolated and identified. The structures of all the isolates were deduced by spectroscopic methods including NMR, MS, IR, and UV spectra. The known compounds 2 and 3 were obtained from a microbial source for the first time. To the best of our knowledge, it is the first report on the microbial transformation of hupB and would facilitate further structural modification of hupB by chemo-enzymatic method. In the LPS-induced neuro-inflammation injury assay, 8α,15α-epoxyhuperzine B (1) exhibited moderate neuroprotective activity by increasing the viability of U251 cell lines with an EC50 of 40.1 nm.


Assuntos
Alcaloides/química , Huperzia/química , Alcaloides/metabolismo , Alcaloides/farmacologia , Biotransformação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Huperzia/metabolismo , Lipopolissacarídeos/toxicidade , Conformação Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia
11.
Plant Mol Biol ; 101(1-2): 113-127, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300998

RESUMO

Transcriptional regulation is an essential molecular machinery in controlling gene expression in diverse plant developmental processes including fruit ripening. This involves the interaction of transcription factors (TFs) and promoters of target genes. In banana, although a number of fruit ripening-associated TFs have been characterized, their number is relatively small. Here we identified a nuclear-localized basic leucine zipper (bZIP) TF, MabZIP93, associated with banana ripening. MabZIP93 activated cell wall modifying genes MaPL2, MaPE1, MaXTH23 and MaXGT1 by directly binding to their promoters. Transient over-expression of MabZIP93 in banana fruit resulted in the increased expression of MaPL2, MaPE1, MaXTH23 and MaXGT1. Moreover, a mitogen-activated protein kinase MaMPK2 and MabZIP93 were found to interact with MabZIP93. The interaction of MabZIP93 with MaMPK2 enhanced MabZIP93 activation of cell wall modifying genes, which was likely due to the phosphorylation of MabZIP93 mediated by MaMPK2. Overall, this study shows that MaMPK2 interacts with and phosphorylates MabZIP93 to promote MabZIP93-mediated transcriptional activation of cell wall modifying genes, thereby expanding our understanding of gene networks associated with banana fruit ripening.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Musa/genética , Proteínas de Plantas/metabolismo , Ativação Transcricional , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Núcleo Celular/metabolismo , Parede Celular/metabolismo , Frutas/genética , Musa/fisiologia , Fosforilação , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética
12.
Yakugaku Zasshi ; 139(6): 923-929, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31155537

RESUMO

Brain function is controlled by the balance between the excitatory and inhibitory systems. If this balance is disrupted and the excitatory system dominates, convulsions or epileptic seizures are induced. Neuronal hyperexcitability in the brain leads to marked changes in the function of the neurons, which adversely affect the stability of the neural network. Many of the currently used antiepileptic drugs are symptomatic treatments that suppress the electrical hyperexcitability of the cerebrum. Although patients with epilepsy should continuously take antiepileptic drugs to control their seizures, approximately 20% of patients are drug resistant. The brain has the ability to control neuronal functions within acceptable limits while it maintains the amount of synaptic inputs that form the basis of information accumulation. Neuronal self-regulation is known as homeostatic scaling by which the intensity of all excitatory synapses is suppressed when neuronal excitability is increased. However, the molecular mechanisms of homeostatic scaling and their pathophysiological significance in vivo remain unclear. Repeated treatment with a subconvulsive dosage of pentylenetetrazol (PTZ), a γ-aminobutyric acid (GABA)A receptor antagonist, is known to induce kindling in mice, which is a common animal model used to study epilepsy. We found that PTZ-induced kindling was potentiated in mice deficient in the transcription factor neuronal PAS domain protein 4 (Npas4), the expression of which is immediately induced in response to neuronal activity. At this symposium, we will discuss the possibility of Npas4 as a novel target molecule for epilepsy treatment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Encéfalo/fisiologia , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Homeostase , Terapia de Alvo Molecular , Neurônios/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Modelos Animais de Doenças , Epilepsia/genética , Humanos , Excitação Neurológica , Camundongos , Sinapses/fisiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-31242548

RESUMO

This research aims to explore the interaction between environmental performance and employment China's manufacturing industries. Based on the environmental performance of 32 industries in China's manufacturing industry during 2006-2015, a panel vector autoregressive model was constructed to study the interaction between industry output and employment in clean industries and dirty industries. The dynamic impact and internal transmission mechanism between environmental performance is analyzed. The study found that in the early stage, due to the reduction of production scale, there was a weak and short-term negative correlation effect on employment, and the mutual promotion relationship between economic benefits and employment was unsustainable. In return, employment affects environmental performance, but the effect differs due to the different forms of environmental performance. For dirty industries, the impact of environmental performance on employment through technical effects is more significant and, thus, a win-win situation of ecological environment and employment stability will be achieved. This research has practical significance regarding how to scientifically and effectively carry out environmental regulation and green management.

14.
Sensors (Basel) ; 19(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174328

RESUMO

Tin(II) monosulfide (SnS) nanosheets were synthesized using SnCl4•5H2O and S powders as raw materials in the presence of H2O via a facile chemical bath method. Orthorhombic phase SnS nanosheets with a thickness of ~100 nm and lateral dimensions of 2~10 µm were obtained by controlling the synthesis parameters. The formation of a SnO2 intermediate is key to the valence reduction of Sn ions (from IV to II) and the formation of SnS. The gas sensors fabricated from SnS nanosheets exhibited an excellent response of 14.86 to 100 ppm ethanol vapor when operating at 160 °C, as well as fast response and recovery times of 23 s and 26 s, respectively. The sensors showed excellent selectivity for the detection of ethanol over acetone, methanol, and ammonia gases, which indicates the SnS nanosheets are promising for high-performance ethanol gas sensing applications.

15.
Nat Commun ; 10(1): 2057, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053709

RESUMO

Over the past decades, molecular knots and links have captivated the chemical community due to their promising mimicry properties in molecular machines and biomolecules and are being realized with increasing frequency with small molecules. Herein, we describe how to utilize stacking interactions and hydrogen-bonding patterns to form trefoil knots, figure-eight knots and [2]catenanes. A transformation can occur between the unique trefoil knot and its isomeric boat-shaped tetranuclear macrocycle by the complementary concentration effect. Remarkably, the realization and authentication of the molecular figure-eight knot with four crossings fills the blank about 41 knot in knot tables. The [2]catenane topology is obtained because the selective naphthalenediimide (NDI)-based ligand, which can engender favorable aromatic donor-acceptor π interactions due to its planar, electron-deficient aromatic surface. The stacking interactions and hydrogen-bond interactions play important roles in these self-assembly processes. The advantages provide an avenue for the generation of structurally and topologically complex supramolecular architectures.

17.
Neurol Res ; 41(8): 749-761, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31038018

RESUMO

Purpose: To confirm different local brain activities characterized in pentylenetetrazol (PTZ)-induced seizure model. Methods: we induced seizure response by a single dose of PTZ injection (45 mg/kg, i.p.). Local activity was recorded in different brain regions by EEG in time and c-Fos staining at different time points (0.5 h, 1 h, 2 h, 4 h) after PTZ treatment. Results: EEG recordings showed distinctive features of activation in different brain areas. With the aggravation of behavioral manifestations of seizures, the frequency and amplitude of the discharges on EEG were increasing gradually. The epileptic response on EEG immediately ended after reaching the maximum stage of seizures, followed by a short period of suppression. The labeling of c-Fos was enhanced in the medial prefrontal cortex, the piriform cortex, the amygdala, hippocampal CA1, CA3 and dentate gyrus, but inapparent in the striatum. The most potent changes in c-Fos were observed in cortex, amygdala nuclei, and dentate gyrus. EEG and c-Fos immunolabeling in neuronal activation showed discrepancies in the striatum. For each brain region, the maximum c-Fos labeling was observed at 2 h after injection and diminished at 4 h. The level of c-Fos immunoreactivity was even lower than the control group, which was accompanied by increased labeling of parvalbumin neurons (PVNs). Conclusions: These findings validated PTZ-induced seizure as a seizure model with a specific spatial-temporal profile. Neuronal activity was enhanced and then subsequently inhibited during seizure evolution. Abbreviations: AEDs: anti-epileptic drugs; AF: Alexa Fluor; CA1: Cornu Ammonis area 1; CA3: Cornu Ammonis area 3; DAB, 3: 3P-diaminobenzidine; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; EEG: electroencephalogram; GABA: gamma-aminobutyric acid; IEG: immediate early gene; mPFC: medial prefrontal cortex; NAc: nucleus accumbens; PB: phosphate buffer; PBS: phosphate buffered saline; PBST: phosphate buffered saline with Tween; PFA, paraformaldehyde; PTZ: pentylenetetrazol; PVN: parvalbumin neuron; ROI: regions of interest; SE: status epilepticus.

18.
Chem Biodivers ; 16(6): e1900062, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30983116

RESUMO

Seven new polyhydroxypregnane glycosides, named cynotophyllosides P-V, together with three known analogs were isolated from the roots of Cynanchum otophyllum C.K.Schneid. Their structures were elucidated by a variety of spectroscopic techniques, as well as acid-catalyzed hydrolysis. All isolates were tested for their immunological activities in vitro against Con A- and LPS-induced proliferation of mice splenocytes. Immunoenhancing (for 1, 9) and immunosuppressive (for 2) activities were observed. Furthermore, cynotophylloside R (3) showed immunomodulatory as it enhanced the proliferation of splenocytes in low concentration and suppressed immune cells in concentration more than 1.0 µg/ml.


Assuntos
Cynanchum/química , Glicosídeos/química , Pregnanos/química , Animais , Proliferação de Células/efeitos dos fármacos , Cynanchum/metabolismo , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo
19.
Acta Pharmacol Sin ; 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967592

RESUMO

Surgical resection of primary solid tumor under anesthesia remains a common practice. It has been concerned whether general anesthetics, especially volatile anesthetics, may promote the growth, migration, and invasion of cancer cells. In this study, we examined the effects of sevoflurane on human glioblastoma cells and determined the role of cluster of differentiation (CD) 44, a cell surface protein involved in cell growth, migration, and invasion, in sevoflurane's effects. We showed that exposure to 1%-4% sevoflurane did not change the cell proliferation, but concentration-dependently increased the invasion of human glioblastoma U251 cells. Furthermore, 4% sevoflurane significantly increased the migration and colony-forming ability of U251 cells. Similar results were observed in human glioblastoma A172 cells. Exposure to sevoflurane concentration-dependently increased the activity of calpains, a group of cysteine proteinases, and CD44 protein in U251 and A172 cells. Knockdown of CD44 with siRNA abolished sevoflurane-induced increases in calpain activity, migration, invasion, and colony-forming ability of U251 cells. Inhalation of 4% sevoflurane significantly increased the tumor volume and invasion/migration distance of U87 cells from the tumor mass in the nude mice bearing human glioblastoma U87 xenograft in the brain. The aggravation by sevoflurane was attenuated by CD44 silencing. In conclusion, sevoflurane increases the migration, invasion, and colony-forming ability of human glioblastoma cells in vitro, and their tumor volume and invasion/migration in vivo. Sevoflurane enhances these cancer cell biology features via increasing the expression of CD44.

20.
Int J Mol Sci ; 20(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999552

RESUMO

Sugar level is an important determinant of fruit taste and consumer preferences. However, upstream regulators that control sugar accumulation during fruit maturation are poorly understood. In the present work, we found that glucose is the main sugar in mature pitaya (Hylocereus) fruit, followed by fructose and sucrose. Expression levels of two sucrose-hydrolyzing enzyme genes HpINV2 and HpSuSy1 obviously increased during fruit maturation, which were correlated well with the elevated accumulation of glucose and fructose. A WRKY transcription factor HpWRKY3 was further identified as the putative binding protein of the HpINV2 and HpSuSy1 promoters by yeast one-hybrid and gel mobility shift assays. HpWRKY3 was localized exclusively in the nucleus and possessed trans-activation ability. HpWRKY3 exhibited the similar expression pattern with HpINV2 and HpSuSy1. Finally, transient expression assays in tobacco leaves showed that HpWRKY3 activated the expressions of HpINV2 and HpSuSy1. Taken together, we propose that HpWRKY3 is associated with pitaya fruit sugar accumulation by activating the transcriptions of sucrose metabolic genes. Our findings thus shed light on the transcriptional mechanism that regulates the sugar accumulation during pitaya fruit quality formation.


Assuntos
Cactaceae/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/metabolismo , Cactaceae/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hidrólise , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA