Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Phys Chem Chem Phys ; 21(42): 23697-23704, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31633133


The desolvation effect of ions plays an important role in adjusting the capacity of supercapacitors and has attracted considerable attention after its discovery. Here, first-principles calculations were conducted to calculate the reaction energies of ions, water, and hydrated ions in bilayer graphene (BG) with different interlayer spacings (d) and to explore the desolvation behaviors of H+, Li+, Na+, and K+ ions. The calculated results showed that H+ can only exist in the state of H3O+ in AA-stacking BG, and desolvation exists only in the case of AB-stacking BG. The complete desolvation size for H+ ions in the AB-stacking system reached 5.6 Å, which was the largest desolvation size of the four ions studied. The critical desolvation sizes of Li+, Na+, and K+ in the BG layers of AA- and AB-stacking increased sharply as a consequence of the increasing ionic radius. However, the complete desolvation sizes of all three ions were in the range of 4-5 Å and with the increase in ionic radius, the complete desolvation sizes showed a reverse tendency. The complete desolvation size of Na+ in AB-stacking BG was slightly larger than that in AA-stacking BG. Further analysis presented that the ionic radii of H+, Li+, Na+, and K+ ions make a dominant contribution to the critical size of desolvation. Our present results provide useful information for improving the capacity of supercapacitors by precisely matching the pore structure and electrolyte through the adjustment of the pore structure of carbon materials.

Polymers (Basel) ; 11(1)2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30960055


A new P-N containing the flame retardant, which was namely N,N'-dibutyl-phosphate diamide (DBPDA), was synthesized and it was assembled into the cavity of ß-cyclodextrin (ß-CD) to form an inclusion complex (IC). The structure and properties of IC were characterized by Fourier transform infraredspectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), ¹H nuclear magnetic resonance (¹H NMR), scanning electron microscopy with X-ray microanalysis (SEM-EDS), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). ¹H NMR and SEM-EDS were also used to identify the molar ratio of ß-CD/DBPDA in IC and the results from the analyses indicated that their molar ratio was 1:1. In order to test the flame retardant effect of IC, it was added to epoxy (EP). IC was proposed to be able to act as an intumescent flame retardant (IFR) system in EP through a combination of ß-CD and DBPDA properties during the combustion process. ß-CD is a biomass carbon source, which has the advantages of environmental protection and low cost. Furthermore, DBPDA is both a source of acid and gas. When IC was heated, IC had the advantage of acting as both a carbon source and foam forming agent, while the DBPDA component were able to directly generate phosphoric acid and NH3 in situ. The impact of IC in low additive amounts on flame retardancy of EP was studied by the cone calorimeter test. When only 3 wt % IC was incorporated, the peak values of heat release rate (pHRR) and smoke production rate (pSPR) of EP were reduced by 22.9% and 33.3% respectively, which suggested that IC could suppress the heat and smoke release efficiently.

Materials (Basel) ; 11(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135388


Lignin can be a candidate as a charring agent applied in halogen-free flame retardant polymers, and incorporation of silicon and nitrogen elements in lignin can benefit to enhancing its thermal stability and charring ability. In the present work, wheat straw alkali lignin (Lig) was modified to incorporate silicon and nitrogen elements by γ-divinyl-3-aminopropyltriethoxysilane, and the modified lignin (CLig) was combined with ammonium polyphosphate (APP) as intumescent flame retardant to be applied in poly(Lactic acid) (PLA). The flame retardancy, combustion behavior and thermal stability of PLA composites were studied by the limited oxygen index (LOI), vertical burning testing (UL-94), cone calorimetry testing (CCT) and thermogravimetric analysis (TGA), respectively. The results showed a significant synergistic effect between CLig and APP in flame retarded PLA (PLA/APP/CLig) occured, and the PLA/APP/CLig had better flame retardancy. CCT data analysis revealed that CLig and APP largely reduced the peak heat release rate (PHRR) and total heat release rate (THR) of PLA, indicating their effectiveness in decreasing the combustion of PLA. TGA results exhibited that APP and CLig improved the thermal stability of PLA at high temperature. The analysis of morphology and structure of residual char indicated that a continuous, compact and intumescent char layer on the material surface formed during firing, and had higher graphitization degree. Mechanical properties data showed that PLA/APP/CLig had higher tensile strength as well as elongation at break.

Phys Chem Chem Phys ; 19(48): 32708-32714, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29199287


Lithium-sulfur (Li-S) batteries have attracted increasing attention due to their high theoretical capacity, being a promising candidate for portable electronics, electric vehicles and large-scale energy storage. The interactions of bilayer structured graphitic C3N4 (bi-C3N4) with S8, lithium polysulfides (LiPSs), 1,3-dioxolane, 1,2-dimethoxyethane and tetrahydrofuran ether-based solvents have been studied using first-principles calculations. It has been found that the (micropore-scale) interlayer of bi-C3N4 shows intimate contact and strong binding with S8 and LiPSs due to the formation of chemical Li-N bonds. The incorporation of soluble LiPSs by the wrinkled layers of bi-C3N4 with 5.5-7.2 Å interlayer pores can suppress the shuttling effect. The interlayer ultramicropores with interlayer distances of <4 Å can accommodate the small Li2S2 and Li2S molecules, and impede the irreversible reaction between the solvents and the LiPSs. The calculated energy gap of bi-C3N4 decreases to be narrow during lithiation. Our results can provide a guideline for promoting the electrochemical performance of microporous g-C3N4/sulfur composites for Li-S batteries.