Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(30): 12848-12853, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477769

RESUMO

Nucleic acid nanostructures are promising biomaterials for the delivery of homologous gene therapy drugs. Herein, we report a facile strategy for the construction of target mRNA (scaffold) and antisense (staple strands) co-assembled RNA/DNA hybrid "origami" for efficient gene therapy. In our design, the mRNA was folded into a chemically well-defined nanostructure through RNA-DNA hybridization with high yield. After the incorporation of an active cell-targeting aptamer, the tailored RNA/DNA hybrid origami demonstrated efficient cellular uptake and controllable release of antisenses in response to intracellular RNase H digestion. The biocompatible RNA/DNA origami (RDO) elicited a noticeable inhibition of cell proliferation based on the silencing of the tumor-associated gene polo-like kinase 1 (PLK1). This RDO-based nanoplatform provides a novel strategy for the further development of gene therapy.


Assuntos
Nanoestruturas , RNA , DNA/genética , Terapia Genética , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA/genética
2.
Nanotechnology ; 32(40)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153957

RESUMO

In the past few decades, DNA nanotechnology has been developed a lot due to their appealing features such as structural programmability and easy functionalization. In the emerging field of DNA nanotechnology, DNA molecules are regarded not only as biological information carriers but also as building blocks in the assembly of various two-dimensional and three-dimensional nanostructures, serving as outstanding templates for the bottom-up fabrication of plasmonic nanostructures. By arranging nanoparticles with different components and morphologies on the predesigned DNA templates, various static and dynamic plasmonic nanostructures with tailored optical properties have been obtained. In this review, we summarized recent advances in the design and construction of static and dynamic DNA-based plasmonic nanostructures. In addition, we addressed their emerging applications in the fields of optics and biosensors. At the end of this review, the open questions and future directions of DNA-based plasmonic nanostructure are also discussed.

3.
Nano Lett ; 21(8): 3573-3580, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33830773

RESUMO

The exploitation of strong light-matter interactions in chiral plasmonic nanocavities may enable exceptional physical phenomena and lead to potential applications in nanophotonics, information communication, etc. Therefore, a deep understanding of strong light-matter interactions in chiral plasmonic-excitonic (plexcitonic) systems constructed by a chiral plasmonic nanocavity and molecular excitons is urgently needed. Herein, we systematically studied the strong light-matter interactions in gold nanorod-based chiral plexcitonic systems assembled on DNA origami. Rabi splitting and anticrossing behavior were observed in circular dichroism spectra, manifesting chiroptical characteristic hybridization. The bisignate line shape of the circular dichroism (CD) signal allows the accurate discrimination of hybrid modes. A large Rabi splitting of ∼205/∼199 meV for left-handed/right-handed plexcitonic nanosystems meets the criterion of strong coupling. Our work deepens the understanding of light-matter interactions in chiral plexcitonic nanosystems and will facilitate the development of chiral quantum optics and chiroptical devices.


Assuntos
Nanopartículas Metálicas , Nanotubos , DNA , Ouro , Fenômenos Físicos
4.
Nat Commun ; 12(1): 358, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441565

RESUMO

Effective and safe hemodialysis is essential for patients with acute kidney injury and chronic renal failures. However, the development of effective anticoagulant agents with safe antidotes for use during hemodialysis has proven challenging. Here, we describe DNA origami-based assemblies that enable the inhibition of thrombin activity and thrombus formation. Two different thrombin-binding aptamers decorated DNA origami initiates protein recognition and inhibition, exhibiting enhanced anticoagulation in human plasma, fresh whole blood and a murine model. In a dialyzer-containing extracorporeal circuit that mimicked clinical hemodialysis, the origami-based aptamer nanoarray effectively prevented thrombosis formation. Oligonucleotides containing sequences complementary to the thrombin-binding aptamers can efficiently neutralize the anticoagulant effects. The nanoarray is safe and immunologically inert in healthy mice, eliciting no detectable changes in liver and kidney functions or serum cytokine concentration. This DNA origami-based nanoagent represents a promising anticoagulant platform for the hemodialysis treatment of renal diseases.


Assuntos
Anticoagulantes/administração & dosagem , Aptâmeros de Nucleotídeos/administração & dosagem , Coagulação Sanguínea/efeitos dos fármacos , DNA/administração & dosagem , Diálise Renal/métodos , Trombose/prevenção & controle , Injúria Renal Aguda/sangue , Injúria Renal Aguda/terapia , Animais , Aptâmeros de Nucleotídeos/química , DNA/química , Células HEK293 , Humanos , Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Camundongos Endogâmicos BALB C , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanoestruturas/ultraestrutura
5.
Nat Mater ; 20(3): 421-430, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32895504

RESUMO

A major challenge in cancer vaccine therapy is the efficient delivery of antigens and adjuvants to stimulate a controlled yet robust tumour-specific T-cell response. Here, we describe a structurally well defined DNA nanodevice vaccine generated by precisely assembling two types of molecular adjuvants and an antigen peptide within the inner cavity of a tubular DNA nanostructure that can be activated in the subcellular environment to trigger T-cell activation and cancer cytotoxicity. The integration of low pH-responsive DNA 'locking strands' outside the nanostructures enables the opening of the vaccine in lysosomes in antigen-presenting cells, exposing adjuvants and antigens to activate a strong immune response. The DNA nanodevice vaccine elicited a potent antigen-specific T-cell response, with subsequent tumour regression in mouse cancer models. Nanodevice vaccination generated long-term T-cell responses that potently protected the mice against tumour rechallenge.


Assuntos
Vacinas Anticâncer/imunologia , Melanoma Experimental/terapia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Apresentação do Antígeno , Bacteriófago M13/genética , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Testes Imunológicos de Citotoxicidade , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Metástase Linfática/prevenção & controle , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Vacinas de DNA/administração & dosagem
7.
Nat Mater ; 20(3): 395-402, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33257794

RESUMO

Natural oxidases mainly rely on cofactors and well-arranged amino acid residues for catalysing electron-transfer reactions but suffer from non-recovery of their activity upon externally induced protein unfolding. However, it remains unknown whether residues at the active site can catalyse similar reactions in the absence of the cofactor. Here, we describe a series of self-assembling, histidine-rich peptides, as short as a dipeptide, with catalytic function similar to that of haem-dependent peroxidases. The histidine residues of the peptide chains form periodic arrays that are able to catalyse H2O2 reduction reactions efficiently through the formation of reactive ternary complex intermediates. The supramolecular catalyst exhibiting the highest activity could be switched between inactive and active states without loss of activity for ten cycles of heating/cooling or acidification/neutralization treatments, demonstrating the reversible assembly/disassembly of the active residues. These findings may aid the design of advanced biomimetic catalytic materials and provide a model for primitive cofactor-free enzymes.


Assuntos
Materiais Biomiméticos/química , Nanoestruturas/química , Oxirredutases/química , Peptídeos/química , Catálise , Dicroísmo Circular , Coenzimas , Cristalografia por Raios X , Histidina/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/química , Modelos Moleculares , Oxirredução , Oxirredutases/metabolismo , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
Angew Chem Int Ed Engl ; 60(5): 2594-2598, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089613

RESUMO

Using the DNA origami technique, we constructed a DNA nanodevice functionalized with small interfering RNA (siRNA) within its inner cavity and the chemotherapeutic drug doxorubicin (DOX), intercalated in the DNA duplexes. The incorporation of disulfide bonds allows the triggered mechanical opening and release of siRNA in response to intracellular glutathione (GSH) in tumors to knockdown genes key to cancer progression. Combining RNA interference and chemotherapy, the nanodevice induced potent cytotoxicity and tumor growth inhibition, without observable systematic toxicity. Given its autonomous behavior, exceptional designability, potent antitumor activity and marked biocompatibility, this DNA nanodevice represents a promising strategy for precise drug design for cancer therapy.


Assuntos
Terapia Combinada/métodos , DNA/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos
9.
Chembiochem ; 21(17): 2408-2418, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227615

RESUMO

Nanomaterials with enzyme-mimicking behavior (nanozymes) have attracted a lot of research interest recently. In comparison to natural enzymes, nanozymes hold many advantages, such as good stability, ease of production and surface functionalization. As the catalytic mechanism of nanozymes is gradually revealed, the application fields of nanozymes are also broadly explored. Beyond traditional colorimetric detection assays, nanozymes have been found to hold great potential in a variety of biomedical fields, such as tumor theranostics, antibacterial, antioxidation and bioorthogonal reactions. In this review, we summarize nanozymes consisting of different nanomaterials. In addition, we focus on the catalytic performance of nanozymes in biomedical applications. The prospects and challenges in the practical use of nanozymes are discussed at the end of this Minireview.

10.
Adv Mater ; 32(21): e2000294, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32301202

RESUMO

DNA origami has been widely investigated as a template for the organization of various functional elements, leading to potential applications in many fields such as biosensing, nanoelectronics, and nanophotonics. However, the synthesis of inorganic nonmetallic nanomaterials with predesigned patterns using DNA origami templates has seldom been explored. Here, a novel method is reported to site-specifically synthesize silica nanostructures with designed patterns on DNA origami templates. The molecular dynamic simulation confirms that the positively charged silica precursors have a stronger electrostatic affinity to protruding double-stranded DNA (dsDNA) than DNA origami surfaces. The work describes a novel strategy to fabricate silica nanostructures with nanoscale precision. Moreover, the site-specific silicification of DNA nanoarchitectures expands the scope of customized synthesis of inorganic nonmetallic nanomaterials.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia , Dióxido de Silício/química , Técnicas de Química Sintética , Simulação de Dinâmica Molecular , Propriedades de Superfície
11.
J Am Chem Soc ; 141(45): 17968-17972, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31660742

RESUMO

The development of facile techniques for precisely patterning complex metal and metal oxide nanostructures is essential for catalytic nanosystems and optical and electronic nanodevices. Herein, we report a general strategy for designing and fabricating metal and metal oxide nanoclusters (MMONs) with arbitrarily prescribed patterns on DNA origami templates. The valuable feature of our approach lies in the site-specific arrangement of thiol groups on DNA origami, which act as reaction centers, initiating in situ MMONs growth. This strategy can be generalized to the patterning of arbitrary geometries and various inorganic materials, which will aid the generation of complex and precisely arranged components for customized functional nanoarchitectures.


Assuntos
DNA/química , Nanopartículas/química , Óxidos/química , Compostos de Sulfidrila/química , Compostos Férricos/química
12.
ACS Appl Mater Interfaces ; 11(12): 11112-11118, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30874429

RESUMO

Delivery of proteins to carry out desired biological functions is a direct approach for disease treatment. However, protein therapy is still facing challenges due to low delivery efficiency, poor targeting during trafficking, insufficient therapeutic efficacy, and possible toxicity induced by carriers. Here, we present a novel delivery platform based on DNA origami nanostructure that enables tumor cell transportation of active proteins for cancer therapy. In our design, cytotoxic protein ribonuclease (RNase) A molecules are organized on the rectangular DNA origami nanosheets, which work as nanovehicles to deliver RNase A molecules into the cytoplasm and execute their cell-killing function inside the tumor cells. Cancer cell-targeting aptamers are also integrated onto the DNA origami-based nanoplatform to enhance its targeting effect. This DNA origami-protein coassembling strategy can be further developed to transport other functional proteins and therapeutic components simultaneously for synergistic effects and be adapted for integrated diagnostics and therapeutics.


Assuntos
DNA/química , Ribonuclease Pancreático/metabolismo , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Microscopia de Força Atômica , Mucina-1/química , Mucina-1/metabolismo , Nanoestruturas/química , Ribonuclease Pancreático/química
13.
ACS Appl Mater Interfaces ; 11(15): 13835-13852, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30480424

RESUMO

Metal nanoarchitectures fabrication based on DNA assembly has attracted a good deal of attention. DNA nanotechnology enables precise organization of nanoscale objects with extraordinary structural programmability. The spatial addressability of DNA nanostructures and sequence-dependent recognition allow functional elements to be precisely positioned; thus, novel functional materials that are difficult to produce using conventional methods could be fabricated. This review focuses on the recent development of the fabrication strategies toward manipulating the shape and morphology of metal nanoparticles and nanoassemblies based on the rational design of DNA structures. DNA-mediated metallization, including DNA-templated conductive nanowire fabrication and sequence-selective metal deposition, etc., is briefly introduced. The modifications of metal nanoparticles (NPs) with DNA and subsequent construction of heterogeneous metal nanoarchitectures are highlighted. Importantly, DNA-assembled dynamic metal nanostructures that are responsive to different stimuli are also discussed as they allow the design of smart and dynamic materials. Meanwhile, the prospects and challenges of these shape-and morphology-controlled strategies are summarized.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Metais/química , Nanoestruturas/química , Nanotecnologia , Ressonância de Plasmônio de Superfície
14.
Nanoscale ; 10(20): 9455-9459, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29749418

RESUMO

We present a SERS-active gold nanostructure with built-in electromagnetic hotspots formed by densely packed gold nanoparticles on a gold nanorod. Cy3 labeled stimuli-responsive DNA motifs were introduced to the SERS-active nanostructure. The SERS signals can be switched ON and OFF reversibly in response to external stimuli (pH, metal ions or organic molecules).


Assuntos
DNA/química , Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Quadruplex G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...