Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
Environ Pollut ; 285: 117185, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33957507

RESUMO

Low-molecular-weight dicarboxylic acids, which are important components of secondary organic aerosols, have been extensively studied in recent years. Many studies have focused on ground-level observations and literature reports on the vertical distribution of the organic aerosols within the urban boundary layer are limited. In this study, the vertical profiles of dicarboxylic acids and related organic compounds (DCRCs) in PM2.5 were investigated at altitudinal levels (ground level and 488 m above the ground level) at the Canton Tower in Guangzhou, southern China, to elucidate their primary sources and secondary formation processes. The concentrations of DCRCs at ground level were generally higher than those at 488 m. Oxalic acid (C2) was the most abundant species, followed by succinic acid (C4) and malonic acid (C3) at both heights. The higher ratio of DCRCs-bound carbon to organic carbon (i.e., DCRCs-C/OC) at 488 m (4.8 ± 1.2%) relative to that at ground level (2.7 ± 0.5%) indicated a higher degree of aerosol aging at 488 m. The abundance of C2 was increased and the conversion of C4 to C3 was enhanced due to the photochemical oxidation of its homologues during long-range transport periods. The increase in C2 was associated with in-cloud processes during pollution periods. Principal component analysis showed that DCRCs were mainly derived from atmospheric secondary processing and biomass burning was also an important source of long-chain carboxylic acids during autumn in Guangzhou. Our results illustrate that secondary processing and biomass burning play prominent roles in controlling the abundance of DCRCs. Furthermore, DCRCs are affected by air masses from regional areas, oxidation of their precursors via vertical transport and in-cloud processes.

2.
Sci Total Environ ; 788: 147814, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34034169

RESUMO

Air pollution is the result of enormous emissions and unfavorable meteorological conditions. The role of meteorology, particularly extremely unfavorable meteorological events (EUMEs), in processing atmospheric PM2.5 pollution has not been fully addressed. This work examined the variations of PM2.5 mass and its chemical components associated with various meteorological parameters and three EUMEs based on meteorological observations and analysis combined with one-year long in situ measurement in 2018 in the suburban area of Tianjin, China. Analysis shows that the polluted days in 2018 were mostly related to the increase in sulfate, nitrate, and ammonium (SNA). Temperature between -2 to 13 °C is more favorable for the formation of SNA, while high temperature exceeding 28 °C is favorable for the formation of organic carbon and sulfate. Most of the ions and carbon components showed significant increase in concentrations when relative humidity exceeded 80%. The maximum decreasing rate of PM2.5 concentrations due to increase in wind speed and planetary boundary height could be 15.35 µg m-3 (m s-1)-1, and 34.37 µg m-3 (100 m)-1, respectively. EUMEs showed significant impacts on PM2.5 components, in which PM2.5 concentrations showed the most significant increase under temperature inversion (TI) events, and surface-based TI (SBTI) events usually have much stronger impacts on PM2.5 concentrations than elevated TI (ELTI). Nitrate was found to be the most sensitive component to EUMEs, especially under multiple EUMEs. The synthetic effects of multiple EUMEs could result in an increase of nitrate by 35.53 µg m-3 (523.3%). In addition, OC and sulfate are more sensitive to heat wave events. Our analysis provides improved understanding of the formation of PM2.5 pollution with respect to meteorology, particularly EUMEs. Based on such information, more attention may be needed on the collaborative prediction of EUMEs and air pollution episodes.

3.
J Vis ; 21(5): 27, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34029368

RESUMO

Whether unconscious complex visual information integration occurs over time remains largely unknown and highly controversial. Previous studies have tended to use a combination of strong masking or suppression and a weak stimulus signal (e.g., low luminance), resulting in a low signal-to-noise ratio during unconscious stimulus presentation. To lengthen the stimulus exposure, we introduced intermittent presentation into interocular suppression. This discontinuous suppression allowed us to insert a word during each suppression period and deliver multiple words over time unconsciously. We found that, after participants received the subliminal context, they responded faster to a syntactically incongruent target word in a lexical decision task. We later replicated the finding in a separate experiment where participants exhibited chance performance on locating the subliminal context. These results confirmed that the sentential context was both subjectively and objectively subliminal. Critically, the effect disappeared when the context was disrupted by presenting only partial sentences or sentences with a reversed word order. These control experiments showed that the effect was not merely driven by word-word association but instead required integration over multiple words in the correct order. These findings support the possibility of unconscious high-level, complex information integration.

4.
Environ Pollut ; 281: 117020, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33813191

RESUMO

Intermediate-volatility organic compounds (IVOCs) emitted from vehicles are generally in the gas phase but may partly partition into particle phase when measured under ambient temperature. To have a complete and accurate picture of IVOC emissions from vehicles, gas- and particle-phase IVOCs from a fleet of gasoline and diesel vehicles were simultaneously characterized by dynamometer testing in Guangzhou, China. The total IVOC emission factors of the diesel vehicles were approximately 16 times those of the gasoline vehicles, and IVOCs were mainly concentrated in the particle phase in the form of the unresolved complex mixture (UCM). The chemical compositions and volatility distributions of the gas-phase IVOCs differed much between gasoline and diesel vehicles, but were similar to those of their respective fuel content. This indicated that vehicle fuel is the main origin for the gas-phase IVOC emissions from vehicles. In comparison, the chemical compositions of the particle-phase IVOCs from gasoline and diesel vehicles were similar and close to lubricating oil content, implying that lubricating oil plays an important role in contributing to particle-phase IVOCs. The highest IVOC fraction in the particle phase occurred from B16-B18 volatility bins, overall accounting for more than half of the particle-phase IVOCs for both the gasoline and diesel vehicles. A conceptual model was developed to articulate the distributions of lubricating oil contents and their evaporation and nucleation/adsorption capabilities in the different volatility bins. The IVOCs-produced secondary organic aerosol (SOA) were 1.4-2.6 and 3.9-11.7 times POAs emitted from the gasoline and diesel vehicles, respectively. The tightening of emission standards had not effectively reduced IVOC emissions and the SOA production until the implementation of China VI emission standard. This underscores the importance of accelerating the promotion of the latest emission standard to alleviate pollution from vehicles in China.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Gasolina/análise , Veículos Automotores , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Volatilização
5.
Environ Sci Technol ; 55(8): 4410-4419, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33793220

RESUMO

Nitrated phenols (NPs) are important atmospheric pollutants that affect air quality, radiation, and health. The recent development of the time-of-flight chemical ionization mass spectrometer (ToF-CIMS) allows quantitative online measurements of NPs for a better understanding of their sources and environmental impacts. Herein, we deployed nitrate ions as reagent ions in the ToF-CIMS and quantified six classes of gaseous NPs in Beijing. The concentrations of NPs are in the range of 1 to 520 ng m-3. Nitrophenol (NPh) has the greatest mean concentration. Dinitrophenol (DNP) shows the greatest haze-to-clean concentration ratio, which may be associated with aqueous production. The high concentrations and distinct diurnal profiles of NPs indicate a strong secondary formation to overweigh losses, driven by high emissions of precursors, strong oxidative capacity, and high NOx levels. The budget analysis on the basis of our measurements and box-model calculations suggest a minor role of the photolysis of NPs (<1 ppb h-1) in producing OH radicals. NPs therefore cannot explain the underestimated OH production in urban environments. Discrepancies between these results and the laboratory measurements of the NP photolysis rates indicate the need for further studies aimed at understanding the production and losses of NPs in polluted urban environments.


Assuntos
Poluentes Atmosféricos , Nitratos , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Gases/análise , Fenóis/análise
6.
PLoS One ; 16(4): e0249299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33882064

RESUMO

INTRODUCTION: To investigate weight status, insulin resistance assessed by HOMA-IR, and their interaction on liver function in non-diabetic Chinese adults. METHODS AND RESULTS: A total of 7066 subjects were included, and divided into normal weight (n = 3447), overweight (n = 2801), and obese (n = 818) groups. Data including weight, height, waist circumference, fasting blood glucose, fasting insulin, total cholesterol, triglycerides, y-glutamyl transferase (GGT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were acquired. In multi-linear regression analysis for liver enzymes as dependent variables, insulin resistance emerged as a determinant of ALT (ß = 0.165, P<0.001), AST (ß = 0.040, P<0.001) and GGT (ß = 0.170, P<0.001) after adjusting for age, sex, body mass index, triglyceride, and cholesterol. Interactions between insulin resistance and weight status by body mass index were observed in ALT (P<0.001), AST (P<0.001) and GGT (P = 0.0418). CONCLUSION: Insulin resistance had significant associations with greater risk of elevated ALT, AST and GGT level in non-diabetic Chinese adults, especially among those who were overweight/ obese.

7.
Environ Sci Technol ; 55(8): 4658-4668, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33754703

RESUMO

Microplastics (MPs) pollution has caused a threat to soil ecosystem diversity and functioning globally. Recently, an increasing number of studies have reported effects of MPs on soil ecosystems. However, these studies mainly focused on soil bacterial communities and a few limited functional genes, which is why MPs effects on soil ecosystems are still not fully understood. Fertilization treatment often coinsides with MPs exposure in practice. Here, we studied effects of an environmentally relevant concentration of polyethylene on soil properties, microbial communities, and functions under different soil types and fertilization history. Our results showed that 0.2% PE MPs exposure could affect soil pH, but this effect varied according to soil type and fertilization history. Long-term fertilization history could alter effects of MPs on soil bacterial and fungal communities in diverse farmland ecosystems (P < 0.05). Soil fungal communities are more sensitive to MPs than bacterial communities under 0.2% PE MPs exposure. MPs exposure has a greater impact on the soil ecosystem with a lower microbial diversity and functional genes abundance and increases the abundance of pathogenic microorganisms. These findings provided an integrated picture to aid our understanding of the impact of MPs on diverse farmland ecosystems with different fertilization histories.


Assuntos
Microbiota , Poluentes do Solo , Ecossistema , Fazendas , Fertilização , Microplásticos , Plásticos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
8.
J Magn Reson Imaging ; 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33576125

RESUMO

BACKGROUND: Multiparametric intravoxel incoherent motion (IVIM) provides diffusion and perfusion information for the treatment prediction of cancer. However, the superiority of IVIM over dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in locally advanced hypopharyngeal carcinoma (LAHC) remains unclear. PURPOSE: To compare the diagnostic performance of IVIM and model-free DCE in assessing induction chemotherapy (IC) response in patients with LAHC. STUDY TYPE: Prospective. POPULATION: Forty-two patients with LAHC. FIELD STRENGTH/SEQUENCE: 3.0 T MRI, including IVIM (12 b values, 0-800 seconds/mm2 ) with a single-shot echo planar imaging sequence and DCE-MRI with a volumetric interpolated breath-hold examination sequence. IVIM MRI is a commercially available sequence and software for calculation and analysis from vendor. ASSESSMENT: The IVIM-derived parameters (diffusion coefficient [D], pseudodiffusion coefficient [D*], and perfusion fraction [f]) and DCE-derived model-free parameters (Wash-in, time to maximum enhancement [Tmax], maximum enhancement [Emax], area under enhancement curve [AUC] over 60 seconds [AUC60 ], and whole area under enhancement curve [AUCw ]) were measured. At the end of IC, patients with complete or partial response were classified as responders according to the Response Evaluation Criteria in Solid Tumors. STATISTICAL TESTS: The differences of parameters between responders and nonresponders were assessed using Mann-Whitney U tests. The performance of parameters for predicting IC response was evaluated by the receiver operating characteristic curves. RESULTS: Twenty-three (54.8%) patients were classified as responders. Compared with nonresponders, the perfusion parameters D*, f, f × D*, and AUCw were significantly higher whereas Wash-in was lower in responders (all P-values <0.05). The f × D* outperformed other parameters, with an AUC of 0.84 (95% confidence interval [CI]: 0.69-0.93), sensitivity of 79.0% (95% CI: 54.4-93.9), and specificity of 82.6% (95% CI: 61.2-95.0). DATA CONCLUSION: The IVIM MRI technique may noninvasively help predict the IC response before treatment in patients with LAHC. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

9.
Environ Pollut ; 274: 116589, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561600

RESUMO

An in-depth study was conducted to quantify and characterize VOC emissions from a petroleum refinery located in Shandong, China. The VOC emission inventory established in this study showed that storage tanks were the largest emission source, accounting for 56.4% of total emissions, followed by loading operations, wastewater collection and treatment system, process vents, and equipment leaks. Meanwhile, the localization factors for refining, storage tanks and loading operations were calculated, which were 1.33, 0.75 and 0.31g VOCs/kg crude oil refined. Furthermore, the characteristics of fugitive and organized emissions were determined for various processes and emission sources using a gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) system. Most samples contained mainly alkanes, but the total VOC concentrations and key species varied greatly among processes. The source profile of the refinery, synthesized using the weighted average method, indicated that cis-2-butene (14.5%), n-pentane (10.2%), n-butane (7.4%), isopentane (6.5%) and MTBE (5.9%) were the major species released by this refinery. Assessment of O3 and secondary organic aerosol formation potentials were completed, and the results indicated that cis-2-butene, m/p-xylene, toluene, n-pentane, isopentane, benzene, o-xylene and ethylbenzene were the active species for which treatment should be prioritized.


Assuntos
Poluentes Atmosféricos , Petróleo , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Petróleo/análise , Compostos Orgânicos Voláteis/análise
10.
Thorac Cancer ; 12(6): 970-973, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33502105

RESUMO

A 48-year-old woman presented to our department and chest computed tomography (CT) revealed five pulmonary nodules, two of which were in the left upper lobe of the lung and three in the superior segment of the left lower lobe., All the lesions were resected for comprehensive histological assessment in order to distinguish synchronous multiple primary lung cancers (SMPLCs) from intrapulmonary metastases. The nodules were all successfully removed by minimally invasive surgery under the guidance of three dimensional (3D) reconstruction, in order to preserve as much lung function for the patient as possible. Postoperative histopathological examination demonstrated the presence of SMPLC. The patient was discharged from hospital on postoperative day 4 without any complications.

11.
J Cell Physiol ; 236(8): 5698-5714, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33393109

RESUMO

Our understanding of signaling pathways regulating the cell fate of human embryonic stem cells (hESCs) is limited. Calcineurin-NFAT signaling is associated with a wide range of biological processes and diseases. However, its role in controlling hESC fate remains unclear. Here, we report that calcineurin A gamma and the NFATc3/SRPX2 axis control the expression of lineage and epithelial-mesenchymal transition (EMT) markers in hESCs. Knockdown of PPP3CC, the gene encoding calcineurin A gamma, or NFATC3, downregulates certain markers both at the self-renewal state and during differentiation of hESCs. Furthermore, NFATc3 interacts with c-JUN and regulates the expression of SRPX2, the gene encoding a secreted glycoprotein known as a ligand of uPAR. We show that SRPX2 is a downstream target of NFATc3. Both SRPX2 and uPAR participate in controlling expression of lineage and EMT markers. Importantly, SRPX2 knockdown diminishes the upregulation of multiple lineage and EMT markers induced by co-overexpression of NFATc3 and c-JUN in hESCs. Together, this study uncovers a previously unknown role of calcineurin A gamma and the NFATc3/SRPX2 axis in modulating the fate determination of hESCs.

12.
Cell Transplant ; 30: 963689720986071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33461333

RESUMO

Long noncoding RNAs (lncRNAs) are increasingly recognized as indispensable components of the regulatory network in the progression of various cancers, including nonsmall cell lung cancer (NSCLC). The lncRNA prostate cancer associated transcript 1 (PCAT1) has been involved in tumorigenesis of multiple malignant solid tumors, but it is largely unknown that what is the role of lncRNA-PCAT1 and how it functions in the progression of lung cancer. Herein, we observed that lncRNA PCAT1 expression was upregulated in both human NSCLC tissues and cell lines, which was determined by qualitative polymerase chain reaction analysis. Then, gain-and loss-of-function manipulations were performed in A549 cells by transfection with a specific short interfering RNA against PCAT1 or a pcDNA-PCAT1 expression vector. The results showed that PCAT1 not only promoted NSCLC cell proliferation and invasion but also inhibited cell apoptosis. Bioinformatics and expression correlation analyses revealed that there was a potential interaction between PCAT1 and the dyskerin pseudouridine synthase 1 (DKC1) protein, an RNA-binding protein. Then, RNA pull-down assays with biotinylated probes and transcripts both confirmed that PCAT1 directly bounds with DKC1 that could also promote NSCLC cell proliferation and invasion and inhibit cell apoptosis. Moreover, the effects of PCAT1 and DKC1 on NSCLC functions are synergistic. Furthermore, PCAT1 and DKC1 activated the vascular endothelial growth factor (VEGF)/protein kinase B (AKT)/Bcl-2/caspase9 pathway in NSCLC cells, and inhibition of epidermal growth factor receptor, AKT, or Bcl-2 could eliminate the effect of PCAT1/DKC1 co-overexpression on NSCLC cell behaviors. In conclusion, lncRNA PCAT1 interacts with DKC1 to regulate proliferation, invasion, and apoptosis in NSCLC cells via the VEGF/AKT/Bcl-2/caspase9 pathway.

13.
J Ethnopharmacol ; 264: 113286, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827658

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Crocodile oil has been used by traditional physicians around the world to treat wound healing and inflammation. However, the scientific rationale and mechanism behind its use in vivo has not been fully researched. AIMS OF THE STUDY: We mainly investigated the mechanism during crocodile oil treatment of up-regulated growth factor expression and anti-inflammatory on burn wound healing in rats. MATERIALS AND METHODS: The moisture and nitric oxide (NO) levels in the skin of rats were analyzed in the first 14 days after burn and the changes of the structure of the skin tissues in the wound healing were studied by hematoxylin-eosin (H.E.) staining within 21 days after scald. The inflammatory factor on burn wound healing in rats was dected by ELISA kits and Q-PCR. the expression of a variety of growth factors (TGF-ß1, VEGE-α, EGF) and PCNA in the skin tissue after burns was evaluated using immunohistochemistry. The down-regulated phosphorylation of p38 MAPK in the wound healing was confirmed by Western-blot analysis. In addition, TEM was used to observe the ultrastructure of scalded skin. RESULTS: This study showed that crocodile oil could significantly reduce the protein and mRNA levels of TNF-α, IL-1ß and IL-6. And it was found that the phosphorylation of p38 MAPK was down-regulated in the wound healing (p < 0.05). Meanwhile, crocodile oil can promote the expression of a variety of growth factors (TGF-ß1, VEGE-α, EGF) and PCNA in the skin tissue after burns, and promote the repair of collagen fibers in the dermis, preventing the production of melanin and maintain the appearance of repaired skin.


Assuntos
Anti-Inflamatórios/uso terapêutico , Queimaduras/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Óleos Voláteis/uso terapêutico , Cicatrização/efeitos dos fármacos , Jacarés e Crocodilos , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Queimaduras/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Cicatrização/fisiologia
14.
Chemosphere ; 262: 127842, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32799146

RESUMO

New Particle Formation (NPF) refers to transformation of gaseous precursors in the atmosphere due to nucleation and subsequent growth process through physicochemical interaction. It has generated a lot of interest due to its profound impact on global and regional environment, climate and human health. We reviewed the studies on NPF in three city clusters of China: the North China Plain, the Yangtze River Delta and the Pearl River Delta obtained through experiment simulations (e.g., chamber simulation, flow-tube simulation, etc.), field observations, and numerical simulations. Due to its atmospheric background pollution and strong oxidation capacities resulting in high source rate of precursors, China's atmosphere possesses challenges different from those evaluated in previous studies on cleaning sites and other developing countries. Hence, NPF events can simultaneously exhibit high condensable sink, formation rate and growth rate. In addition, the high intensity of anthropogenic emissions in urban China has led to greater diversity of pollutant species involved in NPF nucleation and subsequent growth, compared to the dominant role of biogenic precursors at cleaning sites. Differences in geographical location and industrial structure also lead to significant distinctions in NPF characteristics of the three city clusters. Consequently, the lack of understanding of nucleation mechanism of complexly polluted background sites makes the global and regional climate models with submodels based on clean background have enormous uncertainty when applied to urban China. The establishment of a mature research ecosystem including field observations, laboratory simulations and numerical simulations is the key to the breakthrough of NPF research in China.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/análise , Atmosfera/química , China , Cidades , Clima , Ecossistema , Poluição Ambiental , Gases , Humanos , Tamanho da Partícula , Material Particulado/análise
15.
Faraday Discuss ; 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33284304

RESUMO

Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. The Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain (McFAN) investigated the physicochemical mechanisms leading to haze formation with a focus on the contributions of multiphase processes in aerosols and fogs. We integrated observations on multiple platforms with regional and box model simulations to identify and characterize the key oxidation processes producing sulfate, nitrate and secondary organic aerosols. An outdoor twin-chamber system was deployed to conduct kinetic experiments under real atmospheric conditions in comparison to literature kinetic data from laboratory studies. The experiments were spanning multiple years since 2017 and an intensive field campaign was performed in the winter of 2018. The location of the site minimizes fast transition between clean and polluted air masses, and regimes representative for the North China Plain were observed at the measurement location in Gucheng near Beijing. The consecutive multi-year experiments document recent trends of PM2.5 pollution and corresponding changes of aerosol physical and chemical properties, enabling in-depth investigations of established and newly proposed chemical mechanisms of haze formation. This study is mainly focusing on the data obtained from the winter campaign 2018. To investigate multiphase chemistry, the results are presented and discussed by means of three characteristic cases: low humidity, high humidity and fog. We find a strong relative humidity dependence of aerosol chemical compositions, suggesting an important role of multiphase chemistry. Compared with the low humidity period, both PM1 and PM2.5 show higher mass fraction of secondary inorganic aerosols (SIA, mainly as nitrate, sulfate and ammonium) and secondary organic aerosols (SOA) during high humidity and fog episodes. The changes in aerosol composition further influence aerosol physical properties, e.g., with higher aerosol hygroscopicity parameter κ and single scattering albedo SSA under high humidity and fog cases. The campaign-averaged aerosol pH is 5.1 ± 0.9, of which the variation is mainly driven by the aerosol water content (AWC) concentrations. Overall, the McFAN experiment provides new evidence of the key role of multiphase reactions in regulating aerosol chemical composition and physical properties in polluted regions.

16.
Sci Total Environ ; : 143823, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33261875

RESUMO

A lot of restrictive measures were implemented in China during January-February 2020 to control rapid spread of COVID-19. Many studies reported impact of COVID-19 lockdown on air quality, but little research focused on ambient volatile organic compounds (VOCs) till now, which play important roles in production of ozone and secondary organic aerosol. In this study, impact of COVID-19 lockdown on VOCs mixing ratios and sources were assessed based on online measurements of VOCs in Nanjing during December 20, 2019-Feburary 15, 2020 (P1-P2) and April 15-May 13, 2020 (P3). Average VOCs levels during COVID-19 lockdown period (P2) was 26.9 ppb, about half of value for pre-lockdown period (P1). Chemical composition of VOCs also showed significant changes. Aromatics contribution during decreased from 13% during P1 to 9% during P2, whereas alkanes contribution increased from 64% to 68%. Positive matrix factorization (PMF) was then applied for non-methane hydrocarbons (NMHCs) sources apportionment. Five sources were identified, including a source related to transport and background air masses, three sources related to petrochemical industry or chemical industry (petrochemical industry#1-propene/ethene, petrochemical industry#2-C7-C9 aromatics, and chemical industry-benzene), and a source attributed to gasoline evaporation and vehicular emission. During P2, NMHCs levels from petrochemical industry#2-C7-C9 aromatics showed the largest relative decline of 94%, followed by petrochemical industry#1-propene/ethene (67%), and gasoline evaporation and vehicular emission (67%). Furthermore, ratios of OH reactivity of NMHCs versus NO2 level (ROH,NMHCs/NO2) and total oxidant production rate (P (OX)) were calculated to assess potential influences of COVID-19 lockdown on O3 formation.

17.
Environ Pollut ; 269: 115740, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33307399

RESUMO

Solvent use and paint consumption are significant source sectors of volatile organic compounds (VOCs) emissions in China. The occupational painters have high risk of health effect due to exposure to high VOCs concentration. However, the toxic components in coating environment have not been carefully identified, and the health risks of VOCs exposure have not been sufficiently assessed. This study collected air samples from nine workshops of three major coating sectors in the Yangtze River Delta of China, namely cargo container coating, ship equipment coating, and furniture coating, to evaluate the non-cancer and cancer risk of toxic VOCs exposure to occupational painters under a normal working condition. The results show that the container coating had highest cancer risk (2.29 × 10-6-5.53 × 10-6) exceeding the safe limit of 1.0 × 10-6, while non-cancer risk of all workshops was lower than acceptable level of 1. Ethylbenzene and 1,2-dichloropropane should be targeted for priority removal during the container coating process in attempt to reduce adverse health effect on the occupational painters. This study helps better understand the health risk of VOCs exposure in coating workshops in China and provides information for policy-makers to formulate possible control of specific toxic compounds during coating process.

18.
Huan Jing Ke Xue ; 41(12): 5362-5370, 2020 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-33374052

RESUMO

To investigate the vertical distribution of atmospheric formaldehyde in the Pearl River Delta (PRD) urban area, simultaneous measurements were performed at three heights on Canton Tower for the first time. Carbonyls including formaldehyde were sampled with 2,4-dinitrophenylhydrazin (DNPH) at noon for 32 days in autumn of 2018, and then analyzed using high-performance liquid chromatography (HPLC). Average mass concentrations of formaldehyde at ground level, 118 m, and 488 m sites at Canton Tower were (5.10±1.93), (6.61±2.84), and (5.33±2.55) µg·m-3, respectively. The measured formaldehyde was positively correlated with atmospheric oxidant Ox at the three sites (R 0.65-0.75), indicating that photochemical formation is an important source for urban formaldehyde in PRD. Three different profiles were found for formaldehyde vertical distribution during the measurements. The most frequently observed one showed a higher value at 118 m while lower ones at ground level and 488 m, occurring when the boundary layer is in moderate convection state with high photochemical reactivity. The 118 m layer may be also influenced by transported high-chimney emissions from industries in suburban areas. Vertical columns of formaldehyde were also calculated according to its vertical profile. The average value was (11.23±4.80)×1015 molecules·cm-2, 19% lower than that from satellite retrieval, while in the same magnitude as values reported in reference papers.

19.
Reprod Biol Endocrinol ; 18(1): 119, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225937

RESUMO

BACKGROUND: Endometriosis is a benign gynecological disease with obviously feature of estrogen-dependence and inflammatory response. The applications of primary endometriotic stromal cells in research of endometriosis are restricted for short life span, dedifferentiation of hormone and cytokine responsiveness. The objective of this study was to establish and characterize immortalized human endometriotic stromal cells (ihESCs). METHODS: The endometriotic samples were from a patient with ovarian endometriosis and the primary endometriotic stromal cells were isolated from the endometriotic tissues. The primary cells were infected by lentivirus to establish telomerase reverse transcriptase (hTERT)-induced immortalized cells. Quantification of mRNA and proteins was examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western Blot. CCK-8 assay and EdU labeling assay were assigned to assess the growth of ihESCs. Karyotype assay was performed to detect the chromosomes of ihESCs. Colony formation assay and nude mouse tumorigenicity assay were used to evaluate colony-formation and tumorigenesis abilities. RESULTS: ihESCs continuously overexpressed hTERT via infection of lentivirus and significant extended the life span reaching 31 passages. The morphology, proliferation and karyotype of ihESCs remained unchanged. The expression of epithelial-mesenchymal transition (EMT) markers, estrogen-metabolizing proteins and estrogen/progesterone receptors (ERs and PRs) were unaltered. Furthermore, the treatment of estrogen increased the proliferation and EMT of ihESCs. Lipopolysaccharides (LPS) and IL-1ß remarkably induced inflammatory response. The clonogenesis ability of ihESCs was consistent with primary cells, which were much lower than Ishikawa cells. In addition, nude mouse tumorigenicity assay demonstrated that ihESCs were unable to trigger tumor formation. CONCLUSION: This study established and characterized an immortalized endometriotic stromal cell line that exhibited longer life span and kept the cellular morphology and physiological function as the primary cells. The immortalized cells remained normal feedback to estrogen and inflammatory response. Moreover, the immortalized cells were not available with tumorigenic ability. Therefore, ihESCs would be serviceable as in vitro cell tool to investigate the pathogenesis of endometriosis.

20.
Environ Sci Technol ; 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33237756

RESUMO

Secondary aerosol (SA) frequently drives severe haze formation on the North China Plain. However, previous studies mostly focused on submicron SA formation, thus our understanding of SA formation on supermicron particles remains poor. In this study, PM2.5 chemical composition and PM10 number size distribution measurements revealed that the SA formation occurred in very distinct size ranges. In particular, SA formation on dust-dominated supermicron particles was surprisingly high and increased with relative humidity (RH). SA formed on supermicron aerosols reached comparable levels with that on submicron particles during evolutionary stages of haze episodes. These results suggested that dust particles served as a medium for rapid secondary organic and inorganic aerosol formation under favorable photochemical and RH conditions in a highly polluted environment. Further analysis indicated that SA formation pathways differed among distinct size ranges. Overall, our study highlights the importance of dust in SA formation during non-dust storm periods and the urgent need to perform size-resolved aerosol chemical and physical property measurements in future SA formation investigations that are extended to the coarse mode because the large amount of SA formed thereon might have significant impacts on ice nucleation, radiative forcing, and human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...