Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Neurotrauma ; 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33397170


After a severe, high-level spinal cord injury (SCI), plasticity to intraspinal circuits below injury results in heightened spinal sympathetic reflex activity and detrimentally impacts peripheral organ systems. Such sympathetic hyperreflexia is immediately apparent as an episode of autonomic dysreflexia (AD), a life-threatening condition characterized by sudden hypertension and reflexive bradycardia following below-level sensory inputs; for example, pressure sores or impacted fecal matter. Over time, plasticity within the spinal sympathetic reflex (SSR) circuit contributes to the progressive intensification of AD events, as the frequency and severity of AD events increase greatly beginning ∼2 weeks post-injury (wpi). The neuroimmune system has been implicated in driving sympathetic hyperreflexia, as inhibition of the cytokine soluble tumor necrosis factor-alpha (sTNFα) using the biological mimetic XPro1595 beginning within days post-SCI has been shown to attenuate the development of AD. Here, we sought to further understand the effective therapeutic time window of XPro1595 to diminish sympathetic hyperreflexia, as indicated by AD. We delayed the commencement of continuous intrathecal administration of XPro1595 until 2 weeks after a complete, thoracic level 3 injury in adult rats. We examined the severity of colorectal distension-induced AD biweekly. We found that initiation of sTNFα inhibition at 2 wpi does not attenuate the severity or intensification of sympathetic hyperreflexia compared with saline-treated controls. Coupled with previous data from our group, these findings suggest that central sTNFα signaling must be targeted prior to 2 weeks post-SCI in order to decrease sympathetic hyperreflexia.

Nat Commun ; 11(1): 6131, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257677


After a dorsal root crush injury, centrally-projecting sensory axons fail to regenerate across the dorsal root entry zone (DREZ) to extend into the spinal cord. We find that chemogenetic activation of adult dorsal root ganglion (DRG) neurons improves axon growth on an in vitro model of the inhibitory environment after injury. Moreover, repeated bouts of daily chemogenetic activation of adult DRG neurons for 12 weeks post-crush in vivo enhances axon regeneration across a chondroitinase-digested DREZ into spinal gray matter, where the regenerating axons form functional synapses and mediate behavioral recovery in a sensorimotor task. Neuronal activation-mediated axon extension is dependent upon changes in the status of tubulin post-translational modifications indicative of highly dynamic microtubules (as opposed to stable microtubules) within the distal axon, illuminating a novel mechanism underlying stimulation-mediated axon growth. We have identified an effective combinatory strategy to promote functionally-relevant axon regeneration of adult neurons into the CNS after injury.