Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Chin Med ; 18(1): 27, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918923

RESUMO

Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.

2.
Chin Med ; 18(1): 23, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859262

RESUMO

Paeonia emodi Wall. ex Royle is commonly known as Himalayan paeony has great importance as a food and medicine. The practice of Paeonia emodi Wall. ex Royle is very ancient and it is conventionally used for a wide range of illnesses in the folk system of medicine because of its wide beneficial phytochemical profile. The main purpose of the current review was the synthesis of recent data on botany, ethnopharmacology, phytochemistry and potential pharmacological mechanisms of action of Paeonia emodi Wall. ex Royle, thus offering new prospects for the development of new adjuvant natural therapies. Using scientific databases such as PubMed/MedLine, Scopus, Web of Science, ScienceDirect, Google Scholar, Springer, and Wiley, a comprehensive literature search was performed for Paeonia emodi Wall. ex Royle. For searching, we used the next MeSH terms: "Biological Product/isolation and purification", "Biological Products/pharmacology", "Drug Discovery/methods", "Ethnopharmacology, Medicine", "Traditional/methods", "Paeonia/chemistry", "Plant Extracts/pharmacology", "Phytochemicals/chemistry", "Phytochemicals/pharmacology", "Plants, Medicinal". The results of the most recent studies were analyzed and the most important data were summarized in tables and figures. Phytochemical research of Paeonia emodi Wall. ex Royle has led to the isolation of triterpenes, monoterpenes, phenolic acids, fatty acids, organic compounds, steroids, free radicals and some other classes of primary metabolites. In addition, diverse pharmacological activities like antibacterial, antifungal, anticoagulant, airway relaxant lipoxygenase and beta-glucuronidase inhibiting activity, radical scavenging activity, phytotoxic and insecticidal activities have been reported for Paeonia emodi Wall. ex Royle. Different bioactive compounds of Paeonia emodi Wall. ex Royle has proven their therapeutic potential in modern pharmacological and biomedical research to cure numerous gastrointestinal and nervous disorders. In future, further in vitro and in vivo therapeutic studies are required to identify new mechanisms of action, pharmacokinetics studies, and new pharmaceutical formulations for target transport and possible interaction with allopathic drugs. Also, new research regarding quality evaluation, toxicity and safety data in humans is needed.

3.
J Biol Eng ; 17(1): 21, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941601

RESUMO

As an emerging science, tissue engineering and regenerative medicine focus on developing materials to replace, restore or improve organs or tissues and enhancing the cellular capacity to proliferate, migrate and differentiate into different cell types and specific tissues. Renewable resources have been used to develop new materials, resulting in attempts to produce various environmentally friendly biomaterials. Poly (lactic acid) (PLA) is a biopolymer known to be biodegradable and it is produced from the fermentation of carbohydrates. PLA can be combined with other polymers to produce new biomaterials with suitable physicochemical properties for tissue engineering applications. Here, the advances in modified PLA as tissue engineering materials are discussed in light of its drawbacks, such as biological inertness, low cell adhesion, and low degradation rate, and the efforts conducted to address these challenges toward the design of new enhanced alternative biomaterials.

4.
Biomed Pharmacother ; 160: 114332, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736282

RESUMO

In the modern era, cancer can be controlled by chemotherapy treatment, and in many situations a stable disease is obtained. The significant clinical success and subsequent commercialization of naturally derived molecules have further encouraged their exploration as adjunctive therapies in cancer management. The purpose of this comprehensive review is to update the anticancer mechanisms triggered by Erinacine A and regulation of signaling pathways potentially involved in its anticancer activity.The results of preclinical research showed that Erinacin A, a therapeutically important biological metabolite isolated from the basidiomycete fungus Hericium erinaceus offers a multitude of possible chemotherapeutic applications by regulating complex signaling pathways as validated by various pharmacological in vitro and in vivo studies. As a result of Erinacin A's action on oncological signaling pathways, it resulted in induction of apoptosis, reduction of proliferation, invasiveness, generation of oxidative stress and cell cycle arrest in cancer cells.


Assuntos
Basidiomycota , Diterpenos , Apoptose , Diterpenos/farmacologia , Transdução de Sinais , Basidiomycota/metabolismo
5.
Biomed Pharmacother ; 161: 114428, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841029

RESUMO

The potent relation between lycopene intake and reduced incidence of a variety of cancers has an increasing interest. This comprehensive review aims to highlight the in vivo and in vitro research evaluating the anticancer mechanisms of lycopene by underlining the experiment conditions. In addition to these, the general characterization of lycopene has been explained. A collection of relevant scientific pharmacological articles from the following databases PubMed/MedLine, Web of Science, Scopus, TRIP database, and Google Scholar on the mechanisms of anticancer molecular action and cellular effects of lycopene in various types of tumors was performed. The anticancer potential of lycopene has been described by various in vitro cells, animal studies, and some clinical trials. It has been revealed that the anticancer potential of lycopene is mainly due to its powerful singlet-oxygen quencher characteristics, simulation of detoxifying/antioxidant enzymes production, initiation of apoptosis, inhibition of cell proliferation and cell cycle progression as well as modulations of gap junctional communication, the growth factors, and signal transduction pathways. It has been highlighted that the anticancer properties of lycopene are primarily linked to factors including; dose, presence of drug delivery systems, type of cancer, tumor size, and treatment time.

6.
Crit Rev Biotechnol ; : 1-18, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2186995

RESUMO

Phloroglucinol and derived compounds comprise a huge class of secondary metabolites widely distributed in plants and brown algae. A vast array of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer has been associated to this class of compounds. In this review, the available data on the antiviral and antibacterial capacity of phloroglucinols have been analyzed. Some of these compounds and derivatives show important antimicrobial properties in vitro. Phloroglucinols have been shown to be effective against viruses, such as human immunodeficiency virus (HIV), herpes or enterovirus, and preliminary data through docking analysis suggest that they can be effective against SARS-CoV-19. Also, some phloroglucinols derivatives have shown antibacterial effects against diverse bacteria strains, including Bacillus subtilis and Staphylococcus aureus, and (semi)synthetic development of novel compounds have led to phloroglucinols with a significantly increased biological activity. However, therapeutic use of these compounds is hindered by the absence of in vivo studies and scarcity of information on their mechanisms of action, and hence further research efforts are required. On the basis of this consideration, our work aims to gather data regarding the efficacy of natural-occurring and synthetic phloroglucinol derivatives as antiviral and antibacterial agents against human pathogens, which have been published during the last three decades. The recollection of results reported in this review represents a valuable source of updated information that will potentially help researchers in the development of novel antimicrobial agents.

7.
Curr Top Med Chem ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36617707

RESUMO

A sedentary lifestyle has evoked a high risk of cardiovascular (CV) disease, diabetes, and obesity, all of them with high morbimortality rates and with a common denominator, hypertension. Numerous pharmacological drugs have been used for the treatment of hypertension. However, the side effects associated with the use of existing pharmacological therapies have triggered a demand for plant-based medications. In this connection, the aim of this review was to provide an in-depth analysis of the use of plant-derived bioactives for the effective management of hypertension. Phytoconstituents from leaves, bark, stem, roots, seeds, and fruits of medicinal plants grown in our different regions of the globe have been highly searched. Among them, polyphenols (e.g., flavonoids as quercetin, anthocyanins as cyanidin, tannins as ellagic acid, stilbenes as resveratrol, lignans as honokiol and others as hydroxytyrosol or curcumin), organosulfur compounds (e.g. s-allyl cysteine and allicin), fatty acids (e.g. α-lipoic acid, DHA and oleic acid), alkaloids (e.g. berberine or tetrandrine) and some terpenes have been intensively investigated for the management of hypertension, with effective ability being stated in controlling high blood pressure and related health problems both in vivo and in vitro studies. Some of the activities presented by these bioactive compounds are reducing oxidative stress, renin-angiotensin system control, SIRT1 activation, regulating platelet aggregation and COX activity, anti-atherogenic effects, anti-inflammatory properties, vasorelaxation and other results that translate into the prevention or control of hypertension. The knowledge of these bioactive compounds is important in developing countries where traditional medicine is the majority, but it can also give rise to new approaches in hypertension therapy.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36637623

RESUMO

The glycoprotein (GP) IIb/IIIa receptor is found integrin present in platelet aggregations. GP IIb/IIIa antagonists interfere with platelet cross-linking and platelet-derived thrombus formation through the competition with fibrinogen and von Willebrand factor. Currently, three parenteral GP IIb/IIIa competitors (tirofiban, eptifibatide, and abciximab) are approved for clinical use in patients affected by percutaneous coronary interventions (PCI) in the location of acute coronary syndrome (ACS). GP IIb/IIIa antagonists have their mechanism of action in platelet aggregation prevention, distal thromboembolism, and thrombus formation, whereas the initial platelet binding to damage vascular areas is preserved. This work is aimed to provide a comprehensive review of the significance of GP IIb/IIIa inhibitors as a sort of antiplatelet agent. Their mechanism of action is based on factors that affect their efficacy. On the other hand, drugs that inhibit GP IIb/IIIa already approved by the FDA were reviewed in detail. Results from major clinical trials and regulatory practices and guidelines to deal with GP IIb/IIIa inhibitors were deeply investigated. The cardiovascular pathology and neuro-interventional surgical application of GP IIb/IIIa inhibitors as a class of antiplatelet agents were developed in detail. The therapeutic risk/benefit balance of currently available GP IIb/IIa receptor antagonists is not yet well elucidated in patients with ACS who are not clinically evaluated regularly for early cardiovascular revascularization. On the other hand, in patients who have benefited from PCI, the antiplatelet therapy intensification by the addition of a GP IIb/IIIa receptor antagonist (intravenously) may be an appropriate therapeutic strategy in reducing the occurrence of risks of thrombotic complications related to the intervention. Development of GP IIb/IIIa inhibitors with oral administration has the potential to include short-term antiplatelet benefits compared with intravenous GP IIb/IIIa inhibitors for long-term secondary preventive therapy in cardiovascular disease. But studies showed that long-term oral administration of GP IIb/IIIa receptor inhibitors has been ineffective in preventing ischemic events. Paradoxically, they have been linked to a high risk of side effects by producing prothrombotic and pro-inflammatory events.

9.
Crit Rev Biotechnol ; : 1-18, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593064

RESUMO

Phloroglucinol and derived compounds comprise a huge class of secondary metabolites widely distributed in plants and brown algae. A vast array of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer has been associated to this class of compounds. In this review, the available data on the antiviral and antibacterial capacity of phloroglucinols have been analyzed. Some of these compounds and derivatives show important antimicrobial properties in vitro. Phloroglucinols have been shown to be effective against viruses, such as human immunodeficiency virus (HIV), herpes or enterovirus, and preliminary data through docking analysis suggest that they can be effective against SARS-CoV-19. Also, some phloroglucinols derivatives have shown antibacterial effects against diverse bacteria strains, including Bacillus subtilis and Staphylococcus aureus, and (semi)synthetic development of novel compounds have led to phloroglucinols with a significantly increased biological activity. However, therapeutic use of these compounds is hindered by the absence of in vivo studies and scarcity of information on their mechanisms of action, and hence further research efforts are required. On the basis of this consideration, our work aims to gather data regarding the efficacy of natural-occurring and synthetic phloroglucinol derivatives as antiviral and antibacterial agents against human pathogens, which have been published during the last three decades. The recollection of results reported in this review represents a valuable source of updated information that will potentially help researchers in the development of novel antimicrobial agents.

10.
Biomed Pharmacother ; 158: 114145, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586242

RESUMO

The use of plant secondary metabolites has gained considerable attention among clinicians in the prevention and treatment of cancer. A secondary metabolite isolated mainly from the roots and rhizomes of Podophyllum species (Berberidaceae) is aryltetralin lignan - podophyllotoxin (PTOX). The purpose of this review is to discuss the therapeutic properties of PTOX as an important anticancer compound of natural origin. The relevant information regarding the antitumor mechanisms of podophyllotoxin and its derivatives were collected and analyzed from scientific databases. The results of the analysis showed PTOX exhibits potent cytotoxic activity; however, it cannot be used in its pure form due to its toxicity and generation of many side effects. Therefore, it practically remains clinically unusable. Currently, high effort is focused on attempts to synthesize analogs of PTOX that have better properties for therapeutic use e.g. etoposide (VP-16), teniposide, etopophos. PTOX derivatives are used as anticancer drugs which are showing additional immunosuppressive, antiviral, antioxidant, hypolipemic, and anti-inflammatory effects. In this review, attention is paid to the high potential of the usefulness of in vitro cultures of P. peltatum which can be a valuable source of lignans, including PTOX. In conclusion, the preclinical pharmacological studies in vitro and in vivo confirm the anticancer and chemotherapeutic potential of PTOX and its derivatives. In the future, clinical studies on human subjects are needed to certify the antitumor effects and the anticancer mechanisms to be certified and analyzed in more detail and to validate the experimental pharmacological preclinical studies.


Assuntos
Antineoplásicos , Lignanas , Neoplasias , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Antivirais , Neoplasias/tratamento farmacológico
11.
Adv Pharmacol Pharm Sci ; 2022: 8002766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465700

RESUMO

The therapeutic potential of medicinal plants is noted because of the presence of varieties of biochemicals. The monoterpenes, like nerol, estragole, and 3,7-dimethyl-1-octanol, have been reported for antimicrobial, antifungal, anthelmintic, and antioxidant activities. This study evaluated the toxic, cytotoxic, and oxidant/antioxidant effects of these compounds by several in vitro (DPPH and ABTS radical scavenging, and ferric reducing potential), ex vivo (hemolysis), and in vivo (Artemia Salina and Saccharomyces cerevisiae) assays. Results suggest that estragole and 3,7-dimethyl-1-octanol at 31.25-500 µg/mL did not exhibit significant cytotoxic effects in the A. Salina and hemolysis tests. Nerol showed significant cytotoxic effects on these test systems at all test concentrations. The monoterpenes showed radical (ABTS•+ and DPPH•) scavenging capacities in a concentration-dependent manner in vitro tests. However, they did not oxidize the genetic material of S. cerevisiae (SODWT, Sod1Δ, Sod2Δ, Sod1/Sod2Δ, Cat1Δ, and Cat1Δ/Sod1Δ) lines. Among the three monoterpenes, nerol may be a good candidate for antioxidant and anti-tumor therapies.

12.
J Transl Med ; 20(1): 630, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36585670

RESUMO

Since ancient times, plants have been an extensive reservoir of bioactive compounds with therapeutic interest for new drug development and clinical application. Cucurbitacins are a compelling example of these drug leads, primarily present in the plant kingdom, especially in the Cucurbitaceae family. However, these natural compounds are also known in several genera within other plant families. Beyond the Cucurbitaceae family, they are also present in other plant families, as well as in some fungi and one shell-less marine mollusc. Despite the natural abundance of cucurbitacins in different natural species, their obtaining and isolation is limited, as a result, an increase in their chemical synthesis has been developed by researchers. Data on cucurbitacins and their anticancer activities were collected from databases such as PubMed/MedLine, TRIP database, Web of Science, Google Scholar, and ScienceDirect and the information was arranged sequentially for a better understanding of the antitumor potential. The results of the studies showed that cucurbitacins have significant biological activities, such as anti-inflammatory, antioxidant, antimalarial, antimicrobial, hepatoprotective and antitumor potential. In conclusion, there are several studies, both in vitro and in vivo reporting this important anticancer/chemopreventive potential; hence a comprehensive review on this topic is recommended for future clinical research.


Assuntos
Antineoplásicos , Cucurbitacinas , Cucurbitacinas/farmacologia , Cucurbitacinas/uso terapêutico , Cucurbitacinas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Extratos Vegetais
13.
Artigo em Inglês | MEDLINE | ID: mdl-36476432

RESUMO

Alzheimer's disease (AD) is an increasingly common neurodegenerative disease that attracts the attention of researchers and medical community in order to develop new, safe and more effective drugs. Currently available drugs could only slow the AD progression and relieve the symptoms, in addition to being linked to moderate-to-severe side effects. N-methyl D-aspartate (NMDA) receptors antagonists were reported to have the ability to block the glutamate-mediated excitotoxic activity being good therapeutic targets for several neurodegenerative diseases, including AD. Based on data obtained so far, this review provides an overview over the use of NMDA antagonists for AD treatment, starting with a key emphasis on present features and future aspects regarding the use of NMDA antagonists for AD, and lastly a key focus is also given on its use in precision medicine.

15.
Cancer Cell Int ; 22(1): 386, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482329

RESUMO

Therapeutic effect of phytochemicals has been emphasized in the traditional medicine owing to the presence of bioactive molecules, such as polyphenols. Luteolin is a flavone belonging to the flavonoid class of polyphenolic phytochemicals with healing effect on hypertension, inflammatory disorders, and cancer due to its action as pro-oxidants and antioxidants. The anticancer profile of luteolin is of interest due to the toxic effect of contemporary chemotherapy paradigm, leading to the pressing need for the development and identification of physiologically benevolent anticancer agents and molecules. Luteolin exerts anticancer activity by downregulation of key regulatory pathways associated with oncogenesis, in addition to the induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells. In this review, we discuss about the anticancer profile of luteolin.

16.
Cancer Cell Int ; 22(1): 399, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496432

RESUMO

Incidence rate of cancer is estimated to increase by 40% in 2030. Furthermore, the development of resistance against currently available treatment strategies has contributed to the cancer-associated mortality. Scientists are now looking for the solutions that could help prevent the disease occurrence and could provide a pain-free treatment alternative for cancers. Therefore, efforts are now put to find a potent natural compound that could sever this purpose. Ursolic acid (UA), a triterpene acid, has potential to inhibit the tumor progression and induce sensitization to conventional treatment drugs has been documented. Though, UA is a hydrophobic compound therefore it is usually chemically modified to increase its bioavailability prior to administration. However, a thorough literature indicating its mechanism of action and limitations for its use at clinical level was not reviewed. Therefore, the current study was designed to highlight the potential mechanism of UA, its anti-cancer properties, and potential applications as therapeutic compound. This endeavour is a valuable contribution in understanding the hurdles preventing the translation of its potential at clinical level and provides foundations to design new studies that could help enhance its bioavailability and anti-cancer potential for various cancers.

17.
Chin Med ; 17(1): 145, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575479

RESUMO

Dicoumarol, a coumarin-like compound, is known for its anticoagulant properties associated with the ability to inhibit vitamin K, being prescribed as a drug for several decades. The pharmaceutical value of dicoumarol turned it into a focus of chemists' attention, aiming its synthesis and of dicoumarol derivatives, bringing to light new methodologies. In recent years, several other bioactive effects have been claimed for dicoumarol and its derivatives, including anti-inflammatory, antimicrobial, antifungal, and anticancer, although the mechanisms of action underlying them are mostly not disclosed and additional research is needed to unravel them. This review presents a state of the art on the chemistry of dicoumarols, and their potential anticancer characteristics, highlighting the mechanisms of action elucidated so far. In parallel, we draw attention to the lack of in vivo studies and clinical trials to assess the safety and efficacy as drugs for later application.

18.
BMC Pharmacol Toxicol ; 23(1): 95, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564854

RESUMO

BACKGROUND: Among the food additives used in the food industry, food dyes are considered the most toxic. For instance, tartrazine (TRZ) is a food colorant commercially available with conflicting data regarding its cytotoxic, genotoxic, and mutagenic effects. Therefore, this study aimed to evaluate the cytotoxic and mutagenic potential of TRZ using different eukaryotic cells (in vitro). METHODS: This study employed 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), brine shrimp lethality, Allium cepa and Saccharomyces cerevisiae tests. Different concentrations of TRZ and different exposure times were used in this study. RESULTS: The results demonstrate that TRZ induced a concentration-dependent toxic effect on the test systems. It also exerted cytotoxicity in fibroblasts and human gastric cells. In addition, TRZ showed mutagenic effects on the A. cepa test system. However, its toxicogenic effects may not relate to the oxidizing activity, which was confirmed by the S. cerevisiae test model. CONCLUSION: Taken together, TRZ exerted toxicogenic effects on the test systems. Therefore, it may be harmful to health, especially its prolonged use may trigger carcinogenesis.


Assuntos
Mutagênicos , Tartrazina , Humanos , Tartrazina/toxicidade , Mutagênicos/toxicidade , Aditivos Alimentares/toxicidade , Células Eucarióticas , Saccharomyces cerevisiae/genética
19.
Cancer Cell Int ; 22(1): 354, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376956

RESUMO

Recent technological advances in nanoscience and material designing have led to the development of point-of-care devices for biomolecule sensing and cancer diagnosis. In situ and portable sensing devices for bedside, diagnosis can effectively improve the patient's clinical outcomes and reduce the mortality rate. Detection of exosomal RNAs by immuno-biochip with increased sensitivity and specificity to diagnose cancer has raised the understanding of the tumor microenvironment and many other technology-based biosensing devices hold great promise for clinical innovations to conquer the unbeatable fort of cancer metastasis. Electrochemical biosensors are the most sensitive category of biomolecule detection sensors with significantly low concentrations down to the atomic level. In this sense, this review addresses the recent advances in cancer detection and diagnosis by developing significant biological sensing devices that are believed to have better sensing potential than existing facilities.

20.
Front Cell Dev Biol ; 10: 1005910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247004

RESUMO

In today's scenario, when cancer cases are increasing rapidly, anticancer herbal compounds become imperative. Studies on the molecular mechanisms of action of polyphenols published in specialized databases such as Web of Science, Pubmed/Medline, Google Scholar, and Science Direct were used as sources of information for this review. Natural polyphenols provide established efficacy against chemically induced tumor growth with fewer side effects. They can sensitize cells to various therapies and increase the effectiveness of biotherapy. Further pharmacological translational research and clinical trials are needed to evaluate theirs in vivo efficacy, possible side effects and toxicity. Polyphenols can be used to design a potential treatment in conjunction with existing cancer drug regimens such as chemotherapy and radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...