RESUMO
Benzophenones (BPs) are commonly used as UV filters in cosmetics and plastics products and are potentially toxic to the environment. This paper presents kinetics and products of BPs oxidation by ferrate(VI) (FeO42-, Fe(VI)) promoted by permanganate (Mn(VII)) . Degradation of 10.0 µM 2,2'-dihydroxy-4-methoxybenzophenone (BP-8)were determined under different experimental conditions ([Mn(VII)] = 0.5-1.5 µM, [Fe(VI)] = 50-150 µM, and pH = 7.0-10.0). The addition of Mn(VII) traces to Fe(VI)-BP-8 solution enhanced kinetics and efficiency of the removal. Similar enhanced removals were also seen for other BPs (BP-1, BP-3, and BP-4) under optimized conditions. The second-order rate constants (k, M-1s-1) of the degradation of BPs showed positive relationship with the energy of the highest occupied orbital (EHOMO). The possible interaction between Mn(VII) and BP-8 and the enhanced generation of Fe(V)/Fe(IV) and â¢OH was proposed to facilitate the oxidation of the target benzophenone, supported by in-situ electrochemical measurements, theoretical calculations and reactive species quenching experiments. Thirteen oxidation products of BP-8 suggested hydroxylation, bond breaking, polymerization and carboxylation steps in the oxidation. Toxicity assessments by ECOSAR program showed that the oxidized intermediate products posed a tapering ecological risk during the degradation process. Overall, the addition of Mn(VII) could improve the oxidation efficiency of Fe(VI).
Assuntos
Manganês , Poluentes Químicos da Água , Manganês/química , Poluentes Químicos da Água/química , Oxirredução , Benzofenonas , CinéticaRESUMO
Metal-based advanced oxidation processes (AOPs) with peracetic acid (PAA) have been extensively studied to degrade micropollutants (MPs) in wastewater. Mn(II) is a commonly used homogeneous metal catalyst for oxidant activation, but it performs poorly with PAA. This study identifies that the biodegradable chelating ligand picolinic acid (PICA) can significantly mediate Mn(II) activation of PAA for accelerated MP degradation. Results show that, while Mn(II) alone has minimal reactivity toward PAA, the presence of PICA accelerates PAA loss by Mn(II). The PAA-Mn(II)-PICA system removes various MPs (methylene blue, bisphenol A, naproxen, sulfamethoxazole, carbamazepine, and trimethoprim) rapidly at neutral pH, achieving >60% removal within 10 min in clean and wastewater matrices. Coexistent H2O2 and acetic acid in PAA play a negligible role in rapid MP degradation. In-depth evaluation with scavengers and probe compounds (tert-butyl alcohol, methanol, methyl phenyl sulfoxide, and methyl phenyl sulfone) suggested that high-valent Mn species (Mn(V)) is a likely main reactive species leading to rapid MP degradation, whereas soluble Mn(III)-PICA and radicals (CH3C(O)O⢠and CH3C(O)OOâ¢) are minor reactive species. This study broadens the mechanistic understanding of metal-based AOPs using PAA in combination with chelating agents and indicates the PAA-Mn(II)-PICA system as a novel AOP for wastewater treatment.
RESUMO
Many advanced oxidation processes (AOPs) use Fenton-like reactions to degrade organic pollutants by activating peroxymonosulfate (HSO5-, PMS) or peroxydisulfate (S2O82-, PDS) with Fe(H2O)62+ (FeaqII). This paper presents results on the kinetics and mechanisms of reactions between FeaqII and PMS or PDS in the absence and presence of bicarbonate (HCO3-) at different pH. In the absence of HCO3-, FeaqIV, rather than the commonly assumed SO4â¢-, is the dominant oxidizing species. Multianalytical methods verified the selective conversion of dimethyl sulfoxide (DMSO) and phenyl methyl sulfoxide (PMSO) to dimethyl sulfone (DMSO2) and phenyl methyl sulfone (PMSO2), respectively, confirming the generation of FeaqIV by the FeaqII-PMS/PDS systems without HCO3-. Significantly, in the presence of environmentally relevant concentrations of HCO3-, a carbonate radical anion (CO3â¢-) becomes the dominant reactive species as confirmed by the electron paramagnetic resonance (EPR) analysis. The new findings suggest that the mechanisms of the persulfate-based Fenton-like reactions in natural environments might differ remarkably from those obtained in ideal conditions. Using sulfonamide antibiotics (sulfamethoxazole (SMX) and sulfadimethoxine (SDM)) as model contaminants, our study further demonstrated the different reactivities of FeaqIV and CO3â¢- in the FeaqII-PMS/PDS systems. The results shed significant light on advancing the persulfate-based AOPs to oxidize pollutants in natural water.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Bicarbonatos , Dimetil Sulfóxido , Peróxidos , Carbonatos , OxirreduçãoRESUMO
The occurrence of micropollutants in water threatens public health and ecology. Removal of micropollutants such as pharmaceuticals by a green oxidant, ferrate(VI) (FeVIO42-, Fe(VI)) can be accomplished. However, electron-deficient pharmaceuticals, such as carbamazepine (CBZ) showed a low removal rate by Fe(VI). This work investigates the activation of Fe(VI) by adding nine amino acids (AA) of different functionalities to accelerate the removal of CBZ in water under mild alkaline conditions. Among the studied amino acids, proline, a cyclic AA, had the highest removal of CBZ. The accelerated effect of proline was ascribed by demonstrating the involvement of highly reactive intermediate Fe(V) species, generated by one-electron transfer by the reaction of Fe(VI) with proline (i.e., Fe(VI) + proline â Fe(V) + prolineâ¢). The degradation kinetics of CBZ by a Fe(VI)-proline system was interpreted by kinetic modeling of the reactions involved that estimated the rate of the reaction of Fe(V) with CBZ as (1.03 ± 0.21) × 106 M-1 s-1, which was several orders of magnitude greater than that of Fe(VI) of 2.25 M-1 s-1. Overall, natural compounds such as amino acids may be applied to increase the removal efficiency of recalcitrant micropollutants by Fe(VI).
Assuntos
Aminoácidos , Poluentes Químicos da Água , Prolina , Poluentes Químicos da Água/química , Oxirredução , Cinética , Preparações FarmacêuticasRESUMO
The presence of cylindrospermopsin (CYN), a potent cyanotoxin, in drinking water sources poses a tremendous risk to humans and the environment. Detailed kinetic studies herein demonstrate ferrate(VI) (FeVIO42-, Fe(VI)) mediated oxidation of CYN and the model compound 6-hydroxymethyl uracil (6-HOMU) lead to their effective degradation under neutral and alkaline solution pH. A transformation product analysis indicated oxidation of the uracil ring, which has functionality critical to the toxicity of CYN. The oxidative cleavage of the C5=C6 double bond resulted in fragmentation of the uracil ring. Amide hydrolysis is a contributing pathway leading to the fragmentation of the uracil ring. Under extended treatment, hydrolysis, and extensive oxidation lead to complete destruction of the uracil ring skeleton, resulting in the generation of a variety of products including nontoxic cylindrospermopsic acid. The ELISA biological activity of the CYN product mixtures produced during Fe(VI) treatment parallels the concentration of CYN. These results suggest the products do not possess ELISA biological activity at the concentrations produced during treatment. The Fe(VI) mediated degradation was also effective in the presence of humic acid and unaffected by the presence of common inorganic ions under our experimental conditions. The Fe(VI) remediation of CYN and uracil based toxins appears a promising drinking water treatment process.
Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Cinética , Toxinas de Cianobactérias , Oxirredução , Uracila/química , Poluentes Químicos da Água/químicaRESUMO
Doping is a great strategy for tuning the characteristics of graphene-based nanomaterials. Phosphorous has a higher electronegativity as compared to carbon, whereas boron can induce p-type conductivity in graphene. This review provides insight into the different synthesis routes of phosphorous- and boron-doped graphene along with their applications in supercapacitors, lithium- ions batteries, and cells such as solar and fuel cells. The two major approaches for the synthesis, viz. direct and post-treatment methods, are discussed in detail. The former synthetic strategies include ball milling and chemical vapor discharge approaches, whereas self-assembly, thermal annealing, arc-discharge, wet chemical, and electrochemical erosion are representative post-treatment methods. The latter techniques keep the original graphene structure via more surface doping than substitutional doping. As a result, it is possible to preserve the features of the graphene while offering a straightforward handling technique that is more stable and controllable than direct techniques. This review also explains the latest progress in the prospective uses of graphene doped with phosphorous and boron for electronic devices, i.e., fuel and solar cells, supercapacitors, and batteries. Their novel energy-related applications will continue to be a promising area of study.
RESUMO
The regulation of food contaminants in the European Union (EU) is comprehensive, and there are several compounds in the register or being added to the recommendation list. Recently, European standard methods for analysis have also been issued. The quick analysis of different groups of analytes in one sample requires a number of methods and the simultaneous use of various instruments. The aim of the present study was to develop a method that could analyze several groups of food contaminants: in this case, 266 pesticides, 12 mycotoxins, 14 alkaloid toxins, and 3 Alternaria toxins. The main advantage of the herein described approach over other methods is the simultaneous analysis of tenuazonic acid (TEA) and other relevant food contaminants. The developed method unites the newly published standard methods such as EN 15662:2018, EN 17194:2019, EN 17256:2019, EN 17425:2021, EN 17521:2021, which describes the analysis of both regulated and emerging contaminants. The developed method is based on a QuEChERS sample preparation, followed by LC-MS/MS analysis under alkaline mobile phase conditions. The pH of the aqueous eluent was set to 8.3, which resulted in baseline separation among ergot alkaloids and their corresponding epimers, a symmetric chromatographic peak shape for analyzing TEA and fit-for-purpose sensitivity for MS/MS detection in both positive and negative ionization modes. Those compounds, which possess the corresponding isotopically labeled internal standards (ISTD), allowed for direct quantification by the developed method and no further confirmation was necessary. This was proven by satisfactory analyses of a number of quality control (QC), proficiency test (PT), and validation samples.
Assuntos
Micotoxinas , Ácido Tenuazônico , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Alternaria/química , Contaminação de Alimentos/análise , Micotoxinas/análise , Cromatografia Líquida de Alta PressãoRESUMO
The formation of toxic by-products, such as environmentally persistent free radicals (EPFRs), is one of the causes for concern by polycyclic aromatic hydrocarbons (PAHs) in soils. However, the distribution of EPFRs in different soil fractions and their relative contribution to the oxidation potential (OP) have not been investigated. In the present paper, contaminated samples were obtained from the former gasworks sites and were fractionated into different size particles, which were analyzed for EPFRs, reactive oxygen species (ROS), and OP-assayed by dithiothreitol (DTT) (OPDTT). The results showed the highest concentration of EPFRs in the soil particle size with diameters <0.15 mm due to co-existence of PAHs and transition metals. ROS generation is in accordance with the size-specific distribution of EPFRs. Using the DTT assays, the redox activity of various size soil particles was examined, and found it was approximately 4- to 8-folds higher than that of un-contaminated samples and strongly associated with EPFRs, ROS, and PAHs. The obtained results advanced our knowledge on the EPFRs distribution in soil fractions at former MGP sites and emphasized the significance of PAH-EPFRs as a class of compounds to be considered in risk assessment of contaminated sites.
RESUMO
Per- and polyfluoroalkyl substances (PFAS) are a group of legacy and emerging contaminants containing at least one aliphatic perfluorocarbon moiety. They display rapid and extensive transport in the environment due to their generally high water-solubility and weak adsorption onto soil particles. Because of their widespread presence in the environment and known toxicity, PFAS has become a serious threat to the ecosystem and public health. Plants are an essential component of the ecosystem and their uptake and accumulation of PFAS affect the fate and transport of PFAS in the ecosystem and has strong implications for human health. It is therefore imperative to investigate the interactions of plants with PFAS. This review presents a detailed discussion on the mechanisms of the bioavailability and plant uptake of PFAS, and essential factors affecting these processes. The phytotoxic effects of PFAS at physiological, biochemical, and molecular level were also carefully reviewed. At the end, key research gaps were identified, and future research needs were proposed.
Assuntos
Alcaloides , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Disponibilidade Biológica , Ecossistema , Transporte Biológico , Adsorção , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/toxicidadeRESUMO
In this work, the oxidation of five phenolic contaminants by ferrate(VI) was comparatively investigated to explore the possible reaction mechanisms by combined experimental results and theoretical calculations. The second-order rate constants were positively correlated with the energy of the highest occupied molecular orbital. Considering electronic effects of different substituents, the easy oxidation of phenols by ferrate(VI) could be ranked as the electron-donating group (-R) > weak electron-withdrawing group (-X) > strong electron-withdrawing group (-(CâO)-). The contributions of reactive species (Fe(VI), Fe(V)/(IV), and â¢OH) were determined, and Fe(VI) was found to dominate the reaction process. Four main reaction mechanisms including single-oxygen transfer (SOT), double-oxygen transfer (DOT), â¢OH attack, and electron-transfer-mediated coupling reaction were proposed for the ferrate(VI) oxidation process. According to density functional theory calculation results, the presence of -(CâO)- was more conducive for the occurrence of DOT and â¢OH attack reactions than -R and -X, while the tendency of SOT for different substituents was -R > -(CâO)- > -X and that of e--transfer reaction was -R > -X > -(CâO)-. Moreover, the DOT pathway was found in the oxidation of all four substituted phenols, indicating that it may be a common reaction mechanism during the ferrate(VI) oxidation of phenolic compounds.
RESUMO
In the present study, nanocomposites having hierarchical nanoflowers (HNFs) -like morphology were synthesized by ultra-sonication approach. HNFs were ternary composite of MgFe2O4 and bentonite with boron-, phosphorous- co-doped graphene oxide (BPGO). The HNFs were fully characterized using different analytical tools viz. X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersion spectroscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry and Mössbauer analysis. Transmission electron micrographs showed that chiffon-like BPGO nanosheets were wrapped on the MgFe2O4-bentonite surface, resulting in a porous flower-like morphology. The red-shift in XPS binding energies of HNFs as compared to MgFe2O4-bentoniteand BPGO revealed the presence of strong interactions between the two materials. Box-Behnken statistical methodology was employed to optimize adsorptive and photocatalytic parameters using Pb(II) and malathion as model pollutants, respectively. HNFs exhibited excellent adsorption ability for Pb(II) ions, with the Langmuir adsorption capacity of 654 mg g-1 at optimized pH 6.0 and 96% photocatalytic degradation of malathion at pH 9.0 as compared to MgFe2O4-bentonite and BPGO. Results obtained in this study clearly indicate that HNFs are promising nanocomposite for the removal of inorganic and organic contaminants from the aqueous solutions.
Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Bentonita/química , Grafite , Cinética , Chumbo , Malation , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/químicaRESUMO
The treatment of recalcitrant micropollutants in water remains challenging. Ferrate(VI) (FeVIO42-, Fe(VI)) has emerged as a green oxidant to oxidize organic molecules, however, its reactivity with recalcitrant micropollutants are sluggish. Our results demonstrate enhanced oxidation of carbamazepine (CBZ) by three types of visible light-responsive graphitic carbon nitride (g-C3N4) photocatalyst in absence and presence of ferrate(VI) (FeVIO42-, Fe(VI)) under mild alkaline conditions. The g-C3N4 photocatalysts were prepared by thermal process using urea, thiourea, and melamine and were named as CN-U, CN-T, and CN-M, respectively. The degradation efficiency of CBZ, in both visible light-g-C3N4 and visible light-g-C3N4-FeVIO42- systems followed the order of CN-U > CN-T > CN-M. The mechanisms for this trend was elucidated by measuring physiochemical properties of the microstructures with various surface and analytical techniques. Results suggest the dominating role of specific surface area and surface delocalized electrons of microstructures in degrading CBZ. Crystallinity, morphology, and surface functional groups may not directly associate with CBZ degradation. The CN-U has higher specific surface area and surface delocalized electrons than CN-T and CN-M and therefore the highest degradation efficiency of CBZ. The surface electrons likely generated O2â- and 1O2 in the visible light-g-C3N4 system. The additional oxidants, FeV and FeIV in the visible light-g-C3N4- FeVIO42- system led to higher degradation efficiency than the visible light-g-C3N4 system. Results suggest that the surfaces of g-C3N4 may be prepared preferentially with high levels of delocalized electrons at the surface of microstructures to enhance degradation of micropollutants.
Assuntos
Elétrons , Luz , Carbamazepina , Catálise , Grafite , Ferro , Compostos de Nitrogênio , Oxidantes , Tioureia , Ureia , ÁguaRESUMO
This work systematically examined the capability of ferrate (Fe(VI)) for ammonia oxidation, revealing for the first time that bromide ions (Br-) played an important role in promoting the removal of ammonia in Fe(VI) system. In the presence of 10.0 mM Br-, the removal efficiency of ammonia was nearly 3.4 times that of the control, and 1.0 mM ammonia was almost completely removed after two rounds addition of 1.0 mM Fe(VI) in 60 min. PMSO probe test, electron paramagnetic resonance spectra and radical quenching experiments were employed to interpret the underlying promotion mechanism of Br-, and it was proposed that the formation of active bromine (HOBr/OBr-) played a dominant role in the enhanced oxidative removal of ammonia by Fe(VI). Further kinetic model simulations revealed that HOBr/OBr- and Fe(VI) were the two major reactive species in Fe(VI)/Br- system, accounting for 66.7% and 33.0% of ammonia removal, respectively. As the target contaminant, ammonia could quickly consume the generated HOBr/OBr-, thereby suppressing the formation of brominated disinfection byproducts. Finally, NO3- was identified as the dominant transformation product of ammonia, and density functional theory (DFT) calculations revealed that six reaction stages were involved in ammonia oxidation with the first step as the rate-limiting step. This work would enable the full use of coexisting bromides for effective removal of ammonia from natural waters or wastewaters by in situ Fe(VI) oxidation method.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Amônia , Brometos , Bromo , Cinética , Oxirredução , Poluentes Químicos da Água/análiseRESUMO
Peracetic acid (PAA, CH3C(O)OOH) has gained significant attention for its use in wastewater disinfection. Wastewater usually contains both metal ions and organic pollutants and understanding reactions after adding PAA to such contaminated water is needed. This paper presents results regarding the effect of interactions between chromium(III) (Cr(III)) and PAA on the degradation of selected pharmaceuticals, mainly trimethoprim (TMP). The degradation of pharmaceuticals by PAA, PAA-Cr(III), and H2O2-Cr(III) under different conditions was examined (pH = 6.0-10.0 and molar ratios of PAA to Cr(III)). The degradation rate of TMP by PAA-Cr(III) was greater than by PAA and H2O2-Cr(III) under alkaline conditions. Degradation studies using quenching agents and probing molecules, and spectroscopic measurements (UV-visible and electron paramagnetic resonance) suggest â¢OH as the major radical species and Cr(IV)/Cr(V) as additional reactive species. The oxidized products of TMP by PAA-Cr(III) were identified and possible pathways proposed. Degradation of other pharmaceuticals having different molecular structures by PAA-Cr(III) and H2O2-Cr(III) systems were also investigated. Most of the pharmaceuticals degraded at faster rates by PAA-Cr(III) and H2O2-Cr(III) than by PAA alone, suggesting that co-present metal ions may play a significant role in PAA oxidation in water treatment.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cromo , Peróxido de Hidrogênio , Íons , Metais , Oxirredução , Ácido Peracético , Preparações Farmacêuticas , Águas ResiduáriasRESUMO
Resin acids are mixtures of high molecular weight carboxylic acids found in tree resins. Due to higher hydrophobicity and low solubility, they tend to adsorb on the suspended solids in pulp and paper (P&P) mill wastewater and accumulate in primary sludge through settling. Anaerobic digestion (AD) is a common practice stabilizing sludge; however, high concentration of resin acids affects the AD process. The aim of this research was mainly to determine the impact of ferrate (Fe (VI)) oxidation on selected resin acids and anaerobic digestibility of ferrate-treated primary sludge (PS) spiked with the resin acids. First, batch control oxidation of model resin acids with Fe (VI) was conducted to identify an optimum dosage, pH and contact time using a Box-Behnken design approach. Thereafter, anaerobic treatability studies of primary sludge spiked with resin acids both under control condition and optimum ferrate pretreatment were conducted. Up to 97% oxidation of resin acids occurred in pure water, while only 44%-62% oxidation of resin acids occurred in PS with an increasing Fe (VI) dosage from 0.034 to 0.137 mg Fe (VI)/mg tCODfed. The pretreatment did not affect the anaerobic biodegradability of resin acids; however, it lowered their negative influences on the PS digestibility. About 0.076 mg Fe (VI) dosage/mg tCODfed solubilized the sludge increasing the methane production by 40% compared to the untreated digester. The potential benefits of ferrate pretreatment of P&P primary sludge include resin acids oxidation and subsequent toxicity reduction, higher sludge solubilization enhancing methane production and enabling anaerobic digestion at higher COD loading.
RESUMO
Ferrate(VI) and peracetic acid (PAA) are two oxidants of growing importance in water treatment. Recently, our group found that simultaneous application of ferrate(VI) and PAA led to much faster degradation of micropollutants compared to that by a single oxidant, and this paper systematically evaluated the underlying mechanisms. First, we used benzoic acid and methyl phenyl sulfoxide as probe compounds and concluded that Fe(IV)/Fe(V) was the main reactive species, while organic radicals [CH3C(O)Oâ¢/CH3C(O)OOâ¢] had negligible contribution. Second, we removed the coexistent hydrogen peroxide (H2O2) in PAA stock solution with free chlorine and, to our surprise, found the second-order reaction rate constant between ferrate(VI) and PAA to be only about 1.44 ± 0.12 M-1s-1 while that of H2O2 was as high as (2.01 ± 0.12) × 101 M-1s-1 at pH 9.0. Finally, further experiments on ferrate(VI)-bisulfite and ferrate(VI)-2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic)acid systems confirmed that PAA was not an activator for ferrate(VI). Rather, PAA could enhance the oxidation capacity of Fe(IV)/Fe(V), making their oxidation outcompete self-decay. This study, for the first time, reveals the ability of PAA to promote electron transfer efficiency between high-valent metals and organic contaminants and confirms the benefits of co-application of ferrate(VI) and PAA for alkaline wastewater treatment.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Elétrons , Peróxido de Hidrogênio , Ferro , Oxidantes/química , Oxirredução , Ácido Peracético , Poluentes Químicos da Água/químicaRESUMO
The high porosity and tunability of metal-organic frameworks (MOFs) have made them an appealing group of materials for environmental applications. However, their potential in the photocatalytic degradation of per- and polyfluoroalkyl substances (PFAS) has been rarely investigated. Hereby, we demonstrate that over 98.9% of perfluorooctanoic acid (PFOA) was degraded by MIL-125-NH2, a titanium-based MOF, in 24 h under Hg-lamp irradiation. The MOF maintained its structural integrity and porosity after three cycles, as indicated by its crystal structure, surface area, and pore size distribution. Based on the experimental results and density functional theory (DFT) calculations, a detailed reaction mechanism of the chain-shortening and H/F exchange pathways in hydrated electron (eaq-)-induced PFOA degradation were revealed. Significantly, we proposed that the coordinated contribution of eaq- and hydroxyl radical (â¢OH) is vital for chain-shortening, highlighting the importance of an integrated system capable of both reduction and oxidation for efficient PFAS degradation in water. Our results shed light on the development of effective and sustainable technologies for PFAS breakdown in the environment.
Assuntos
Fluorocarbonos , Estruturas Metalorgânicas , Purificação da Água , Caprilatos/química , Fluorocarbonos/química , Estruturas Metalorgânicas/química , Purificação da Água/métodosRESUMO
Many iron(II, III, VI)- and manganese(II, IV, VII)-based oxidation processes can generate reactive iron/manganese species (RFeS/RMnS, i.e., Fe(IV)/Fe(V) and Mn(III)/Mn(V)/Mn(VI)), which have mild and selective reactivity toward a wide range of organic contaminants, and thus have drawn significant attention. The reaction mechanisms of these processes are rather complicated due to the simultaneous involvement of multiple radical and/or nonradical species. As a result, the ambiguity in the occurrence of RFeS/RMnS and divergence in the degradation mechanisms of trace organic contaminants in the presence of RFeS/RMnS exist in literature. In order to improve the critical understanding of the RFeS/RMnS-mediated oxidation processes, the detection methods of RFeS/RMnS and their roles in the destruction of trace organic contaminants are reviewed with special attention to some specific problems related to the scavenger and probe selection and experimental results analysis potentially resulting in some questionable conclusions. Moreover, the influence of background constituents, such as organic matter and halides, on oxidation efficiency of RFeS/RMnS-mediated oxidation processes and formation of byproducts are discussed through their comparison with those in free radicals-dominated oxidation processes. Finally, the prospects of the RFeS/RMnS-mediated oxidation processes and the challenges for future applications are presented.
Assuntos
Ferro , Manganês , OxirreduçãoRESUMO
Many studies on the reactive nitrogen species (RNS, âNO2, âNO and âNH2) with pollutants in water have been performed to understand the abatement of inorganic and organic compounds by these species, and the mechanisms of the formation of oxidative transformation products, especially nitrogenous oxidized byproducts. In this review, approaches to generate RNS in aqueous solution is first presented, followed by a summary of their reactivity with a wide range of compounds. The second-order rate constants (k, M-1 s-1) for the reactivity of âNO2 and âNO with a wide range of inorganic radical and nonradical species were correlated with thermodynamic one-electron oxidation potentials (E0). The positive correlation between log(k) versus E0 suggests one-electron transfer reactions. The Hammett-type correlations were developed for the reactions of âNO2 and âNH2 with organic compounds, using the unsubstituted benzene as a reference molecule (i.e., Σσo,p,m = 0) to calculate Σσo,p,m = σo + σp + σm for each organic molecule. Linear negative correlations of log(k) with Σσo,p,m were obtained for both âNO2 and âNH2, suggesting electrophilic substitution mechanism. The correlations presented herein may assist in eliminating organic micropollutants in water treatment and reuse processes.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Cinética , Nitrogênio , Dióxido de Nitrogênio , Compostos Orgânicos , OxirreduçãoRESUMO
Activation of peracetic acid (PAA) with iron species is an emerging advanced oxidation process (AOP). This study investigates the use of the chelating agent picolinic acid (PICA) to extend the pH range and enhance the performance of the PAA-Fe(III) AOP. Compared to the PAA-Fe(III) system, the PAA-Fe(III)-PICA system degrades various micropollutants (MPs: methylene blue, naproxen, sulfamethoxazole, carbamazepine, trimethoprim, diclofenac, and bisphenol-A) much more rapidly at higher pH, achieving almost complete removal of parent compounds within 10 min. PAA significantly outperforms the coexistent H2O2 and is the key oxidant for rapid compound degradation. Other chelating agents, EDTA, NTA, citric acid, proline, and nicotinic acid, could not enhance MP degradation in the PAA-Fe(III) system, while 2,6-pyridinedicarboxylic acid with a structure similar to PICA moderately enhanced MP degradation. Experiments with scavengers (tert-butyl alcohol and methyl phenyl sulfoxide) and a probe compound (benzoic acid) confirmed that high-valent iron species [Fe(IV) and/or Fe(V)], rather than radicals, are the major reactive species contributing to MP degradation. The oxidation products of methylene blue, naproxen, and sulfamethoxazole by PAA-Fe(III)-PICA were characterized and supported the proposed mechanism. This work demonstrates that PICA is an effective complexing ligand to assist the Fenton reaction of PAA by extending the applicable pH range and accelerating the catalytic ability of Fe(III).