Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
PLoS Genet ; 15(7): e1008287, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31344026

RESUMO

CD36 is a platelet membrane glycoprotein whose engagement with oxidized low-density lipoprotein (oxLDL) results in platelet activation. The CD36 gene has been associated with platelet count, platelet volume, as well as lipid levels and CVD risk by genome-wide association studies. Platelet CD36 expression levels have been shown to be associated with both the platelet oxLDL response and an elevated risk of thrombo-embolism. Several genomic variants have been identified as associated with platelet CD36 levels, however none have been conclusively demonstrated to be causative. We screened 81 expression quantitative trait loci (eQTL) single nucleotide polymorphisms (SNPs) associated with platelet CD36 expression by a Massively Parallel Reporter Assay (MPRA) and analyzed the results with a novel Bayesian statistical method. Ten eQTLs located 13kb to 55kb upstream of the CD36 transcriptional start site of transcript ENST00000309881 and 49kb to 92kb upstream of transcript ENST00000447544, demonstrated significant transcription shifts between their minor and major allele in the MPRA assay. Of these, rs2366739 and rs1194196, separated by only 20bp, were confirmed by luciferase assay to alter transcriptional regulation. In addition, electromobility shift assays demonstrated differential DNA:protein complex formation between the two alleles of this locus. Furthermore, deletion of the genomic locus by CRISPR/Cas9 in K562 and Meg-01 cells results in upregulation of CD36 transcription. These data indicate that we have identified a variant that regulates expression of CD36, which in turn affects platelet function. To assess the clinical relevance of our findings we used the PhenoScanner tool, which aggregates large scale GWAS findings; the results reinforce the clinical relevance of our variants and the utility of the MPRA assay. The study demonstrates a generalizable paradigm for functional testing of genetic variants to inform mechanistic studies, support patient management and develop precision therapies.

2.
Genome Med ; 11(1): 30, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101064

RESUMO

BACKGROUND: Exome sequencing (ES) has been successfully applied in clinical detection of single nucleotide variants (SNVs) and small indels. However, identification of copy number variants (CNVs) using ES data remains challenging. The purpose of this study is to understand the contribution of CNVs and copy neutral runs of homozygosity (ROH) in molecular diagnosis of patients referred for ES. METHODS: In a cohort of 11,020 consecutive ES patients, an Illumina SNP array analysis interrogating mostly coding SNPs was performed as a quality control (QC) measurement and for CNV/ROH detection. Among these patients, clinical chromosomal microarray analysis (CMA) was performed at Baylor Genetics (BG) on 3229 patients, either before, concurrently, or after ES. We retrospectively analyzed the findings from CMA and the QC array. RESULTS: The QC array can detect ~ 70% of pathogenic/likely pathogenic CNVs (PCNVs) detectable by CMA. Out of the 11,020 ES cases, the QC array identified PCNVs in 327 patients and uniparental disomy (UPD) disorder-related ROH in 10 patients. The overall PCNV/UPD detection rate was 5.9% in the 3229 ES patients who also had CMA at BG; PCNV/UPD detection rate was higher in concurrent ES and CMA than in ES with prior CMA (7.2% vs 4.6%). The PCNVs/UPD contributed to the molecular diagnoses in 17.4% (189/1089) of molecularly diagnosed ES cases with CMA and were estimated to contribute in 10.6% of all molecularly diagnosed ES cases. Dual diagnoses with both PCNVs and SNVs were detected in 38 patients. PCNVs affecting single recessive disorder genes in a compound heterozygous state with SNVs were detected in 4 patients, and homozygous deletions (mostly exonic deletions) were detected in 17 patients. A higher PCNV detection rate was observed for patients with syndromic phenotypes and/or cardiovascular abnormalities. CONCLUSIONS: Our clinical genomics study demonstrates that detection of PCNV/UPD through the QC array or CMA increases ES diagnostic rate, provides more precise molecular diagnosis for dominant as well as recessive traits, and enables more complete genetic diagnoses in patients with dual or multiple molecular diagnoses. Concurrent ES and CMA using an array with exonic coverage for disease genes enables most effective detection of both CNVs and SNVs and therefore is recommended especially in time-sensitive clinical situations.

3.
Genome Med ; 11(1): 25, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014393

RESUMO

BACKGROUND: Intrachromosomal triplications (TRP) can contribute to disease etiology via gene dosage effects, gene disruption, position effects, or fusion gene formation. Recently, post-zygotic de novo triplications adjacent to copy-number neutral genomic intervals with runs of homozygosity (ROH) have been shown to result in uniparental isodisomy (UPD). The genomic structure of these complex genomic rearrangements (CGRs) shows a consistent pattern of an inverted triplication flanked by duplications (DUP-TRP/INV-DUP) formed by an iterative DNA replisome template-switching mechanism during replicative repair of a single-ended, double-stranded DNA (seDNA), the ROH results from an interhomolog or nonsister chromatid template switch. It has been postulated that these CGRs may lead to genetic abnormalities in carriers due to dosage-sensitive genes mapping within the copy-number variant regions, homozygosity for alleles at a locus causing an autosomal recessive (AR) disease trait within the ROH region, or imprinting-associated diseases. METHODS: Here, we report a family wherein the affected subject carries a de novo 2.2-Mb TRP followed by 42.2 Mb of ROH and manifests clinical features overlapping with those observed in association with chromosome 14 maternal UPD (UPD(14)mat). UPD(14)mat can cause clinical phenotypic features enabling a diagnosis of Temple syndrome. This CGR was then molecularly characterized by high-density custom aCGH, genome-wide single-nucleotide polymorphism (SNP) and methylation arrays, exome sequencing (ES), and the Oxford Nanopore long-read sequencing technology. RESULTS: We confirmed the postulated DUP-TRP/INV-DUP structure by multiple orthogonal genomic technologies in the proband. The methylation status of known differentially methylated regions (DMRs) on chromosome 14 revealed that the subject shows the typical methylation pattern of UPD(14)mat. Consistent with these molecular findings, the clinical features overlap with those observed in Temple syndrome, including speech delay. CONCLUSIONS: These data provide experimental evidence that, in humans, triplication can lead to segmental UPD and imprinting disease. Importantly, genotype/phenotype analyses further reveal how a post-zygotically generated complex structural variant, resulting from a replication-based mutational mechanism, contributes to expanding the clinical phenotype of known genetic syndromes. Mechanistically, such events can distort transmission genetics resulting in homozygosity at a locus for which only one parent is a carrier as well as cause imprinting diseases.

4.
Cell ; 176(6): 1310-1324.e10, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827684

RESUMO

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ∼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.

5.
Thromb Haemost ; 119(5): 716-725, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30731491

RESUMO

Megakaryopoiesis produces specialized haematopoietic stem cells in the bone marrow that give rise to megakaryocytes which ultimately produce platelets. Defects in megakaryopoiesis can result in altered platelet counts and physiology, leading to dysfunctional haemostasis and thrombosis. Additionally, dysregulated megakaryopoiesis is also associated with myeloid pathologies. Transcription factors play critical roles in cell differentiation by regulating the temporal and spatial patterns of gene expression which ultimately decide cell fate. Several transcription factors have been described as regulating megakaryopoiesis including myocyte enhancer factor 2C (MEF2C); however, the genes regulated by MEF2C that influence megakaryopoiesis have not been reported. Using chromatin immunoprecipitation-sequencing and Gene Ontology data we identified five candidate genes that are bound by MEF2C and regulate megakaryopoiesis: MOV10, AGO3, HDAC1, RBBP5 and WASF2. To study expression of these genes, we silenced MEF2C gene expression in the Meg01 megakaryocytic cell line and in induced pluripotent stem cells by CRISPR/Cas9 editing. We also knocked down MEF2C expression in cord blood-derived haematopoietic stem cells by siRNA. We found that absent or reduced MEF2C expression resulted in defects in megakaryocytic differentiation and reduced levels of the candidate target genes. Luciferase assays confirmed that genomic sequences within the target genes are regulated by MEF2C levels. Finally, we demonstrate that small deletions linked to a platelet count-associated single nucleotide polymorphism alter transcriptional activity, suggesting a mechanism by which genetic variation in MEF2C alters platelet production. These data help elucidate the mechanism behind MEF2C regulation of megakaryopoiesis and genetic variation driving platelet production.

6.
Nat Med ; 25(4): 701-702, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30787481

RESUMO

In the version of this article originally published, some cases that were presented in Fig. 3 should have been underlined but were not. The appropriate cases have now been underlined. The error has been corrected in the print, PDF and HTML versions of the article.

7.
Nat Med ; 25(3): 439-447, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692697

RESUMO

Current non-invasive prenatal screening is targeted toward the detection of chromosomal abnormalities in the fetus1,2. However, screening for many dominant monogenic disorders associated with de novo mutations is not available, despite their relatively high incidence3. Here we report on the development and validation of, and early clinical experience with, a new approach for non-invasive prenatal sequencing for a panel of causative genes for frequent dominant monogenic diseases. Cell-free DNA (cfDNA) extracted from maternal plasma was barcoded, enriched, and then analyzed by next-generation sequencing (NGS) for targeted regions. Low-level fetal variants were identified by a statistical analysis adjusted for NGS read count and fetal fraction. Pathogenic or likely pathogenic variants were confirmed by a secondary amplicon-based test on cfDNA. Clinical tests were performed on 422 pregnancies with or without abnormal ultrasound findings or family history. Follow-up studies on cases with available outcome results confirmed 20 true-positive, 127 true-negative, zero false-positive, and zero-false negative results. The initial clinical study demonstrated that this non-invasive test can provide valuable molecular information for the detection of a wide spectrum of dominant monogenic diseases, complementing current screening for aneuploidies or carrier screening for recessive disorders.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Acondroplasia/diagnóstico , Acondroplasia/genética , Acrocefalossindactilia/diagnóstico , Acrocefalossindactilia/genética , Adulto , Osso e Ossos/anormalidades , Ácidos Nucleicos Livres , Colágeno Tipo I/genética , Síndrome de Lange/diagnóstico , Síndrome de Lange/genética , Feminino , Doenças Genéticas Inatas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hidropisia Fetal/diagnóstico por imagem , Hidropisia Fetal/genética , Linfangioma Cístico/diagnóstico por imagem , Linfangioma Cístico/genética , Medição da Translucência Nucal , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/genética , Valor Preditivo dos Testes , Gravidez , Diagnóstico Pré-Natal , Análise de Sequência de DNA , Displasia Tanatofórica/diagnóstico , Displasia Tanatofórica/genética , Ultrassonografia Pré-Natal
8.
J Pediatr Genet ; 7(4): 164-173, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30430034

RESUMO

Wolf-Hirschhorn syndrome (WHS) is caused by partial deletion of the short arm of chromosome 4 and is characterized by dysmorphic facies, congenital heart defects, intellectual/developmental disability, and increased risk for congenital diaphragmatic hernia (CDH). In this report, we describe a stillborn girl with WHS and a large CDH. A literature review revealed 15 cases of WHS with CDH, which overlap a 2.3-Mb CDH critical region. We applied a machine-learning algorithm that integrates large-scale genomic knowledge to genes within the 4p16.3 CDH critical region and identified FGFRL1 , CTBP1 , NSD2 , FGFR3 , CPLX1 , MAEA , CTBP1-AS2 , and ZNF141 as genes whose haploinsufficiency may contribute to the development of CDH.

9.
Nat Commun ; 9(1): 4720, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420638

RESUMO

This Article contains an error in Figure 2. In panel a, the second lane of the western blot should have been labelled 'siNT'. A correct version of Figure 2a appears in the Author Correction associated with this Article; the error has not been fixed in the original Article.

10.
Bioinformatics ; 34(15): 2682-2683, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052913

RESUMO

Motivation: Genetic reporter assays are a convenient, relatively inexpensive method for studying the regulation of gene expression. Massively Parallel Reporter Assays (MPRA) are high-throughput functionalization assays that interrogate the transcriptional activity of many genetic variants at once using a library of synthetic barcoded constructs. Despite growing interest in this area, there are few computational tools to design and execute MPRA studies. Results: We designed an online web-tool and R package that allows for interactive MPRA experimental design encompassing both power analysis and design of constructs. Our tool is tuned using data from real MPRA studies. Users can adjust experimental parameters to examine the predicted effect on assay power as well as upload VCFs for automated construct sequence generation. Availability and implementation: The MPRA Design Tools web application is available here: https://andrewghazi.shinyapps.io/designmpra/, https://github.com/andrewGhazi/designMPRA and https://github.com/andrewGhazi/mpradesigntools. Supplementary information: Supplementary data are available at Bioinformatics online.

11.
Am J Hum Genet ; 103(2): 171-187, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30032986

RESUMO

Premature termination codon (PTC)-bearing transcripts are often degraded by nonsense-mediated decay (NMD) resulting in loss-of-function (LoF) alleles. However, not all PTCs result in LoF mutations, i.e., some such transcripts escape NMD and are translated to truncated peptide products that result in disease due to gain-of-function (GoF) effects. Since the location of the PTC is a major factor determining transcript fate, we hypothesized that depletion of protein-truncating variants (PTVs) within the gene region predicted to escape NMD in control databases could provide a rank for genic susceptibility for disease through GoF versus LoF. We developed an NMD escape intolerance score to rank genes based on the depletion of PTVs that would render them able to escape NMD using the Atherosclerosis Risk in Communities Study (ARIC) and the Exome Aggregation Consortium (ExAC) control databases, which was further used to screen the Baylor-Center for Mendelian Genomics disease database. This analysis revealed 1,996 genes significantly depleted for PTVs that are predicted to escape from NMD, i.e., PTVesc; further studies provided evidence that revealed a subset as candidate genes underlying Mendelian phenotypes. Importantly, these genes have characteristically low pLI scores, which can cause them to be overlooked as candidates for dominant diseases. Collectively, we demonstrate that this NMD escape intolerance score is an effective and efficient tool for gene discovery in Mendelian diseases due to production of truncated or altered proteins. More importantly, we provide a complementary analytical tool to aid identification of genes associated with dominant traits through a mechanism distinct from LoF.

12.
Genome Res ; 28(8): 1228-1242, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29907612

RESUMO

Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.


Assuntos
Elementos Alu/genética , Variações do Número de Cópias de DNA/genética , Instabilidade Genômica/genética , Duplicação Gênica/genética , Genoma Humano/genética , Humanos , Deleção de Sequência
13.
Nat Med ; 24(4): 505-511, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29578538

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer diagnosed in more than 200,000 women each year and is recalcitrant to targeted therapies. Although TNBCs harbor multiple hyperactive receptor tyrosine kinases (RTKs), RTK inhibitors have been largely ineffective in TNBC patients thus far. We developed a broadly effective therapeutic strategy for TNBC that is based on combined inhibition of receptors that share the negative regulator PTPN12. Previously, we and others identified the tyrosine phosphatase PTPN12 as a tumor suppressor that is frequently inactivated in TNBC. PTPN12 restrains several RTKs, suggesting that PTPN12 deficiency leads to aberrant activation of multiple RTKs and a co-dependency on these receptors. This in turn leads to the therapeutic hypothesis that PTPN12-deficient TNBCs may be responsive to combined RTK inhibition. However, the repertoire of RTKs that are restrained by PTPN12 in human cells has not been systematically explored. By methodically identifying the suite of RTK substrates (MET, PDGFRß, EGFR, and others) inhibited by PTPN12, we rationalized a combination RTK-inhibitor therapy that induced potent tumor regression across heterogeneous models of TNBC. Orthogonal approaches revealed that PTPN12 was recruited to and inhibited these receptors after ligand stimulation, thereby serving as a feedback mechanism to limit receptor signaling. Cancer-associated mutation of PTPN12 or reduced PTPN12 protein levels diminished this feedback mechanism, leading to aberrant activity of these receptors. Restoring PTPN12 protein levels restrained signaling from RTKs, including PDGFRß and MET, and impaired TNBC survival. In contrast with single agents, combined inhibitors targeting the PDGFRß and MET receptors induced the apoptosis in TNBC cells in vitro and in vivo. This therapeutic strategy resulted in tumor regressions in chemo-refractory patient-derived TNBC models. Notably, response correlated with PTPN12 deficiency, suggesting that impaired receptor feedback may establish a combined addiction to these proto-oncogenic receptors. Taken together, our data provide a rationale for combining RTK inhibitors in TNBC and other malignancies that lack receptor-activating mutations.

14.
Epilepsia Open ; 3(1): 81-85, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29588991

RESUMO

Advance in the exome-wide sequencing analysis contributes to identifying hundreds of genes that are associated with early-onset epileptic encephalopathy and neurodevelopmental disorders. On the basis of massive sequencing data, functional interactions among different genes are suggested to explain the common molecular pathway underlying the pathogenic process of these disorders. However, the relevance of such interactions with the phenotypic severity or variety in an affected individual remains elusive. In this report, we present a 45-year-old woman with neurofibromatosis type 1 (NF1), infantile-onset epileptic encephalopathy, and severe developmental delay. Whole-exome sequencing identified de novo pathogenic mutations in NF1 and the Schaaf-Yang syndrome-associated gene, MAGEL2. Literature-curated interaction data predicted that NF1 and MAGEL2 proteins were closely connected in this network via their common interacting proteins. Direct conversion of fibroblasts into neurons in vitro showed that neuronal cells from 9 patients with NF1 expressed significantly lower levels of MAGEL2 (54%, p = 0.0047) than those from healthy individuals. These data provide the first evidence that pathogenic mutations of NF1 deregulate the expression of other neurodevelopmental disease-associated genes. De novo mutations in multiple genes may lead to severe developmental phenotypes through their cumulative effects or synergistic interactions.

15.
Microbiome ; 6(1): 2, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298732

RESUMO

BACKGROUND: The airway microbiome is a subject of great interest for the study of respiratory disease. Anterior nare samples are more accessible than samples from deeper within the nasopharynx. However, the correlation between the microbiota found in the anterior nares and the microbiota found within the nasopharynx is unknown. We assessed the anterior nares and nasopharyngeal microbiota to determine (1) the relation of the microbiota from these two upper airway sites and (2) if associations were maintained between the microbiota from these two sites and two bronchiolitis severity outcomes. RESULTS: Among 815 infants hospitalized at 17 US centers for bronchiolitis with optimal 16S rRNA gene sequence reads from both nasal swab and nasopharyngeal aspirate samples, there were strong intra-individual correlations in the microbial communities between the two sample types, especially relating to Haemophilus and Moraxella genera. By contrast, we found a high abundance of Staphylococcus genus in the nasal swabs-a pattern not found in the nasopharyngeal samples and not informative when predicting the dominant nasopharyngeal genera. While these disparities may have been due to sample processing differences (i.e., nasal swabs were mailed at ambient temperature to emulate processing of future parent collected swabs while nasopharyngeal aspirates were mailed on dry ice), a previously reported association between Haemophilus-dominant nasopharyngeal microbiota and the increased severity of bronchiolitis was replicated utilizing the nasal swab microbiota and the same outcome measures: intensive care use (adjusted OR 6.43; 95% CI 2.25-20.51; P < 0.001) and hospital length-of-stay (adjusted OR 4.31; 95% CI, 1.73-11.11; P = 0.002). Additionally, Moraxella-dominant nasopharyngeal microbiota was previously identified as protective against intensive care use, a result that was replicated when analyzing the nasal swab microbiota (adjusted OR 0.30; 95% CI, 0.11-0.64; P = 0.01). CONCLUSIONS: While the microbiota of the anterior nares and the nasopharynx are distinct, there is considerable overlap between the bacterial community compositions from these two anatomic sites. Despite processing differences between the samples, these results indicate that microbiota severity associations from the nasopharynx are recapitulated in the anterior nares, suggesting that nasal swab samples not only are effective sample types, but also can be used to detect microbial risk markers.


Assuntos
Bronquiolite/microbiologia , Cavidade Nasal/microbiologia , Nasofaringe/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Staphylococcus/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Hospitalização , Humanos , Lactente , Estudos Longitudinais , Masculino , Microbiota , Staphylococcus/classificação , Staphylococcus/genética
16.
BMC Med Genet ; 18(1): 117, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061165

RESUMO

BACKGROUND: Wilms tumor, aniridia, genitourinary anomalies and mental retardation (WAGR) syndrome is a rare genetic disorder caused by heterozygous deletions of WT1 and PAX6 at chromosome 11p13. Deletion of BDNF is known eto be associated with hyperphagia and obesity in both humans and animal models; however, neuroendocrine and epigenetic profiles of individuals with WAGR syndrome remain to be determined. CASE PRESENTATION: We report a 5-year-old girl with the typical phenotype of WAGR syndrome. She showed profound delays in physical growth, motor and cognitive development without signs of obesity. Array comparative genome hybridization (CGH) revealed that she carried a 14.4 Mb deletion at 11p14.3p12, encompassing the WT1, PAX6 and BDNF genes. She experienced recurrent hypoglycemic episodes at 5 years of age. Insulin tolerance and hormonal loading tests showed normal hypothalamic responses to the hypoglycemic condition and other stimulations. Methylation analysis for freshly prepared DNA from peripheral lymphocytes using the pyro-sequencing-based system showed normal patterns of methylation at known imprinting control regions. CONCLUSIONS: Children with WAGR syndrome may manifest profound delay in postnatal growth through unknown mechanisms. Epigenetic factors and growth-associated genes in WAGR syndrome remain to be characterized.


Assuntos
Cromossomos Humanos Par 11/genética , Hormônios/metabolismo , Deleção de Sequência , Síndrome WAGR/metabolismo , Pré-Escolar , Hibridização Genômica Comparativa , Metilação de DNA , Epigênese Genética , Feminino , Humanos , Hipoglicemia , Síndrome WAGR/genética , Síndrome WAGR/fisiopatologia
18.
Nat Commun ; 8: 15773, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604738

RESUMO

Recent fate-mapping studies concluded that EMT is not required for metastasis of carcinomas. Here we challenge this conclusion by showing that these studies failed to account for possible crosstalk between EMT and non-EMT cells that promotes dissemination of non-EMT cells. In breast cancer models, EMT cells induce increased metastasis of weakly metastatic, non-EMT tumour cells in a paracrine manner, in part by non-cell autonomous activation of the GLI transcription factor. Treatment with GANT61, a GLI1/2 inhibitor, but not with IPI 926, a Smoothened inhibitor, blocks this effect and inhibits growth in PDX models. In human breast tumours, the EMT-transcription factors strongly correlate with activated Hedgehog/GLI signalling but not with the Hh ligands. Our findings indicate that EMT contributes to metastasis via non-cell autonomous effects that activate the Hh pathway. Although all Hh inhibitors may act against tumours with canonical Hh/GLI signalling, only GLI inhibitors would act against non-canonical EMT-induced GLI activation.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Metástase Neoplásica , Comunicação Parácrina , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Piridinas/farmacologia , Pirimidinas/farmacologia , Microambiente Tumoral , Alcaloides de Veratrum/farmacologia , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores
19.
Clin Cancer Res ; 23(17): 5123-5134, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28487443

RESUMO

Purpose: Resistance to anti-HER2 therapies in HER2+ breast cancer can occur through activation of alternative survival pathways or reactivation of the HER signaling network. Here we employed BT474 parental and treatment-resistant cell line models to investigate a mechanism by which HER2+ breast cancer can reactivate the HER network under potent HER2-targeted therapies.Experimental Design: Resistant derivatives to lapatinib (L), trastuzumab (T), or the combination (LR/TR/LTR) were developed independently from two independent estrogen receptor ER+/HER2+ BT474 cell lines (AZ/ATCC). Two derivatives resistant to the lapatinib-containing regimens (BT474/AZ-LR and BT474/ATCC-LTR lines) that showed HER2 reactivation at the time of resistance were subjected to massive parallel sequencing and compared with parental lines. Ectopic expression and mutant-specific siRNA interference were applied to analyze the mutation functionally. In vitro and in vivo experiments were performed to test alternative therapies for mutant HER2 inhibition.Results: Genomic analyses revealed that the HER2L755S mutation was the only common somatic mutation gained in the BT474/AZ-LR and BT474/ATCC-LTR lines. Ectopic expression of HER2L755S induced acquired lapatinib resistance in the BT474/AZ, SK-BR-3, and AU565 parental cell lines. HER2L755S-specific siRNA knockdown reversed the resistance in BT474/AZ-LR and BT474/ATCC-LTR lines. The HER1/2-irreversible inhibitors afatinib and neratinib substantially inhibited both resistant cell growth and the HER2 and downstream AKT/MAPK signaling driven by HER2L755S in vitro and in vivoConclusions: HER2 reactivation through acquisition of the HER2L755S mutation was identified as a mechanism of acquired resistance to lapatinib-containing HER2-targeted therapy in preclinical HER2-amplified breast cancer models, which can be overcome by irreversible HER1/2 inhibitors. Clin Cancer Res; 23(17); 5123-34. ©2017 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Terapia de Alvo Molecular , Receptor ErbB-2/genética , Afatinib , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Lapatinib , Camundongos , Mutação , Quinazolinas/administração & dosagem , Quinazolinas/efeitos adversos , Receptor ErbB-2/antagonistas & inibidores , Receptores Estrogênicos/genética , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/administração & dosagem , Trastuzumab/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
PLoS One ; 12(4): e0175792, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28414749

RESUMO

BACKGROUND: The fusion (F) protein of RSV is the major vaccine target. This protein undergoes a conformational change from pre-fusion to post-fusion. Both conformations share antigenic sites II and IV. Pre-fusion F has unique antigenic sites p27, ø, α2α3ß3ß4, and MPE8; whereas, post-fusion F has unique antigenic site I. Our objective was to determine the antigenic variability for RSV/A and RSV/B isolates from contemporary and historical genotypes compared to a historical RSV/A strain. METHODS: The F sequences of isolates from GenBank, Houston, and Chile (N = 1,090) were used for this analysis. Sequences were compared pair-wise to a reference sequence, a historical RSV/A Long strain. Variability (calculated as %) was defined as changes at each amino acid (aa) position when compared to the reference sequence. Only aa at antigenic sites with variability ≥5% were reported. RESULTS: A total of 1,090 sequences (822 RSV/A and 268 RSV/B) were analyzed. When compared to the reference F, those domains with the greatest number of non-synonymous changes included the signal peptide, p27, heptad repeat domain 2, antigenic site ø, and the transmembrane domain. RSV/A subgroup had 7 aa changes in the antigenic sites: site I (N = 1), II (N = 1), p27 (N = 4), α2α3ß3ß4(AM14) (N = 1), ranging in frequency from 7-91%. In comparison, RSV/B had 19 aa changes in antigenic sites: I (N = 3), II (N = 1), p27 (N = 9), ø (N = 4), α2α3ß3ß4(AM14) (N = 1), and MPE8 (N = 1), ranging in frequency from 79-100%. DISCUSSION: Although antigenic sites of RSV F are generally well conserved, differences are observed when comparing the two subgroups to the reference RSV/A Long strain. Further, these discrepancies are accented in the antigenic sites in pre-fusion F of RSV/B isolates, often occurring with a frequency of 100%. This could be of importance if a monovalent F protein from the historical GA1 genotype of RSV/A is used for vaccine development.


Assuntos
Genes Virais , Vírus Sincicial Respiratório Humano/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Antivirais/sangue , Variação Antigênica , Antígenos Virais/química , Antígenos Virais/genética , Variação Genética , Genótipo , Humanos , Conformação Proteica , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA