Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Cell Metab ; 33(10): 1943-1956.e2, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34478633

RESUMO

Metabolic dysfunction is becoming a predominant risk for the development of many comorbidities. Ischemic heart disease (IHD) still imposes the highest disease burden among all cardiovascular diseases worldwide. However, the contributions of metabolic risk factors to IHD over time have not been fully characterized. Here, we analyzed the global disease burden of IHD and 15 associated general risk factors from 1990 to 2019 by applying the methodology framework of the Global Burden of Disease Study. We found that the global death cases due to IHD increased steadily during that time frame, while the mortality rate gradually declined. Notably, metabolic risk factors have become the leading driver of IHD, which also largely contributed to the majority of IHD-related deaths shifting from developed countries to developing countries. These findings suggest an urgent need to implement effective measures to control metabolic risk factors to prevent further increases in IHD-related deaths.

2.
Cell Metab ; 33(10): 2059-2075.e10, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34536344

RESUMO

Myocardial ischemia-reperfusion (MIR) injury is a major cause of adverse outcomes of revascularization after myocardial infarction. To identify the fundamental regulator of reperfusion injury, we performed metabolomics profiling in plasma of individuals before and after revascularization and identified a marked accumulation of arachidonate 12-lipoxygenase (ALOX12)-dependent 12-HETE following revascularization. The potent induction of 12-HETE proceeded by reperfusion was conserved in post-MIR in mice, pigs, and monkeys. While genetic inhibition of Alox12 protected mouse hearts from reperfusion injury and remodeling, Alox12 overexpression exacerbated MIR injury. Remarkably, pharmacological inhibition of ALOX12 significantly reduced cardiac injury in mice, pigs, and monkeys. Unexpectedly, ALOX12 promotes cardiomyocyte injury beyond its enzymatic activity and production of 12-HETE but also by its suppression of AMPK activity via a direct interaction with its upstream kinase TAK1. Taken together, our study demonstrates that ALOX12 is a novel AMPK upstream regulator in the post-MIR heart and that it represents a conserved therapeutic target for the treatment of myocardial reperfusion injury.

3.
Hepatology ; 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435375

RESUMO

BACKGROUND & AIMS: Although the prevalence of nonalcoholic fatty liver disease (NAFLD) has risen dramatically to 25% of the adult population worldwide, there are as yet no approved pharmacological interventions for the disease due to uncertainty about the underlying molecular mechanisms. It is known that mitochondrial dysfunction is an important factor in the development of NAFLD. Mitochondrial antiviral signaling protein (MAVS) is a critical signaling adaptor for host defenses against viral infection. However, the role of MAVS in mitochondrial metabolism during NAFLD progression remains largely unknown. APPROACH & RESULTS: Based on expression analysis, we identified a marked downregulation of MAVS in hepatocytes during NAFLD progression. By employing MAVS global knockout and hepatocyte-specific MAVS knockout mice, we found that MAVS is protective against diet-induced NAFLD. MAVS deficiency induces extensive mitochondrial dysfunction during NAFLD pathogenesis which was confirmed as impaired mitochondrial respiratory capacity and membrane potential. Metabolomics data also showed the extensive metabolic disorders after MAVS deletion. Mechanistically, MAVS interacts with the N-terminal stretch of voltage-dependent anion channel 2 (VDAC2), which is required for the ability of MAVS to influence mitochondrial function and hepatic steatosis. CONCLUSIONS: In hepatocytes, MAVS plays an important role in protecting against NAFLD by helping to regulate healthy mitochondrial function. These findings provide new insights regarding the metabolic importance of conventional immune regulators and support the possibility that targeting MAVS may represent a new avenue for treating NAFLD.

4.
Hepatology ; 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34272738

RESUMO

BACKGROUND AND AIMS: NAFLD is the most prevalent chronic liver disease worldwide, but no effective pharmacological therapeutics are available for clinical use. NASH is the more severe stage of NAFLD. During this progress, dysregulation of endoplasmic reticulum (ER)-related pathways and proteins is one of the predominant hallmarks. We aimed to reveal the role of ring finger protein 5 (RNF5), an ER-localized E3 ubiquitin-protein ligase, in NASH and to explore its underlying mechanism. APPROACH AND RESULTS: We first inspected the expression level of RNF5 and found that it was markedly decreased in livers with NASH in multiple species including humans. We then introduced adenoviruses for Rnf5 overexpression or knockdown into primary mouse hepatocytes and found that palmitic acid/oleic acid (PAOA)-induced lipid accumulation and inflammation in hepatocytes were markedly attenuated by Rnf5 overexpression but exacerbated by Rnf5 gene silencing. Hepatocyte-specific Rnf5 knockout significantly exacerbated hepatic steatosis, inflammatory response, and fibrosis in mice challenged with diet-induced NASH. Mechanistically, we identified 3-hydroxy-3-methylglutaryl CoA reductase degradation protein 1 (HRD1) as a binding partner of RNF5 by systematic interactomics analysis. RNF5 directly bound to HRD1 and promoted its lysine 48 (K48)-linked and K33-linked ubiquitination and subsequent proteasomal degradation. Furthermore, Hrd1 overexpression significantly exacerbated PAOA-induced lipid accumulation and inflammation, and short hairpin RNA-mediated Hrd1 knockdown exerted the opposite effects. Notably, Hrd1 knockdown significantly diminished PAOA-induced lipid deposition, and up-regulation of related genes resulted from Rnf5 ablation in hepatocytes. CONCLUSIONS: These data indicate that RNF5 inhibits NASH progression by targeting HRD1 in the ubiquitin-mediated proteasomal pathway. Targeting the RNF5-HRD1 axis may provide insights into the pathogenesis of NASH and pave the way for developing strategies for NASH prevention and treatment.

5.
Hepatology ; 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231239

RESUMO

BACKGROUND AND AIMS: NAFLD is the most prevalent chronic liver disease without any Food and Drug Administration-approved pharmacological intervention in clinic. Fatty acid synthase (FASN) is one of the most attractive targets for NAFLD treatment because of its robust rate-limiting capacity to control hepatic de novo lipogenesis. However, the regulatory mechanisms of FASN in NAFLD and potential therapeutic strategies targeting FASN remain largely unknown. METHODS AND RESULTS: Through a systematic interactomics analysis of FASN-complex proteins, we screened and identified sorting nexin 8 (SNX8) as a binding partner of FASN. SNX8 directly bound to FASN and promoted FASN ubiquitination and subsequent proteasomal degradation. We further demonstrated that SNX8 mediated FASN protein degradation by recruiting the E3 ligase tripartite motif containing 28 (TRIM28) and enhancing the TRIM28-FASN interaction. Notably, Snx8 interference in hepatocytes significantly deteriorated lipid accumulation in vitro, whereas SNX8 overexpression markedly blocked hepatocyte lipid deposition. Furthermore, the aggravating effect of Snx8 deletion on NAFLD was validated in vivo as hepatic steatosis and lipogenic pathways in the liver were significantly exacerbated in Snx8-knockout mice compared to wild-type controls. Consistently, hepatocyte-specific overexpression of Snx8 in vivo markedly suppressed high-fat, high-cholesterol diet (HFHC)-induced hepatic steatosis. Notably, the protective effect of SNX8 against NAFLD was largely dependent on FASN suppression. CONCLUSIONS: These data indicate that SNX8 is a key suppressor of NAFLD that promotes FASN proteasomal degradation. Targeting the SNX8-FASN axis is a promising strategy for NAFLD prevention and treatment.

6.
Cell Metab ; 33(8): 1640-1654.e8, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34107313

RESUMO

Obesity is characterized by the excessive accumulation of the white adipose tissue (WAT), but healthy expansion of WAT via adipocyte hyperplasia can offset the negative metabolic effects of obesity. Thus, identification of novel adipogenesis regulators that promote hyperplasia may lead to effective therapies for obesity-induced metabolic disorders. Using transcriptomic approaches, we identified transmembrane BAX inhibitor motif-containing 1 (TMBIM1) as an inhibitor of adipogenesis. Gain or loss of function of TMBIM1 in preadipocytes inhibited or promoted adipogenesis, respectively. In vivo, in response to caloric excess, adipocyte precursor (AP)-specific Tmbim1 knockout (KO) mice displayed WAT hyperplasia and improved systemic metabolic health, while overexpression of Tmbim1 in transgenic mice showed the opposite effects. Moreover, mature adipocyte-specific Tmbim1 KO did not affect WAT cellularity or nutrient homeostasis. Mechanistically, TMBIM1 binds to and promotes the autoubiquitination and degradation of NEDD4, which is an E3 ligase that stabilizes PPARγ. Our data show that TMBIM1 is a potent repressor of adipogenesis and a potential therapeutic target for obesity-related metabolic disease.

7.
Hepatology ; 74(4): 2133-2153, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34133792

RESUMO

BACKGROUND AND AIMS: Hepatic ischemia/reperfusion (I/R) injury, a common clinical problem that occurs during liver surgical procedures, causes a large proportion of early graft failure and organ rejection cases. The identification of key regulators of hepatic I/R injury may provide potential strategies to clinically improve the prognosis of liver surgery. Here, we aimed to identify the role of tumor necrosis factor alpha-induced protein 3-interacting protein 3 (TNIP3) in hepatic I/R injury and further reveal its immanent mechanisms. APPROACH AND RESULTS: In the present study, we found that hepatocyte TNIP3 was markedly up-regulated in livers of both persons and mice subjected to I/R surgery. Hepatocyte-specific Tnip3 overexpression effectively attenuated I/R-induced liver necrosis and inflammation, but improved cell proliferation in mice, whereas TNIP3 ablation largely aggravated liver injury. This inhibitory effect of TNIP3 on hepatic I/R injury was found to be dependent on significant activation of the Hippo-YAP signaling pathway. Mechanistically, TNIP3 was found to directly interact with large tumor suppressor 2 (LATS2) and promote neuronal precursor cell-expressed developmentally down-regulated 4-mediated LATS2 ubiquitination, leading to decreased Yes-associated protein (YAP) phosphorylation at serine 112 and the activated transcription of factors downstream of YAP. Notably, adeno-associated virus delivered TNIP3 expression in the liver substantially blocked I/R injury in mice. CONCLUSIONS: TNIP3 is a regulator of hepatic I/R injury that alleviates cell death and inflammation by assisting ubiquitination and degradation of LATS2 and the resultant YAP activation.TNIP3 represents a promising therapeutic target for hepatic I/R injury to improve the prognosis of liver surgery.

8.
Cell Metab ; 33(6): 1171-1186.e9, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951476

RESUMO

Antihyperglycemic therapy is an important priority for the treatment of type 2 diabetes (T2D). Excessive hepatic glucose production (HGP) is a major cause of fasting hyperglycemia. Therefore, a better understanding of its regulation would be important to develop effective antihyperglycemic therapies. Using a gluconeogenesis-targeted kinome screening approach combined with transcriptome analyses, we uncovered Nemo-like kinase (NLK) as a potent suppressor of HGP. Mechanistically, NLK phosphorylates and promotes nuclear export of CRTC2 and FOXO1, two key regulators of hepatic gluconeogenesis, resulting in the proteasome-dependent degradation of the former and the inhibition of the self-transcriptional activity and expression of the latter. Importantly, the expression of NLK is downregulated in the liver of individuals with diabetes and in diabetic rodent models and restoring NLK expression in the mouse model ameliorates hyperglycemia. Therefore, our findings uncover NLK as a critical player in the gluconeogenic regulatory network and as a potential therapeutic target for T2D.

9.
Circ Res ; 128(11): 1747-1765, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34043417

RESUMO

Cardiac arrhythmias and the resulting sudden cardiac death are significant cardiovascular complications that continue to impose a heavy burden on patients and society. An emerging body of evidence indicates that nonalcoholic fatty liver disease (NAFLD) is closely associated with the risk of cardiac arrhythmias, independent of other conventional cardiometabolic comorbidities. Although most studies focus on the relationship between NAFLD and atrial fibrillation, associations with ventricular arrhythmias and cardiac conduction defects have also been reported. Mechanistic investigations suggest that a number of NAFLD-related pathophysiological alterations may potentially elicit structural, electrical, and autonomic remodeling in the heart, contributing to arrhythmogenic substrates in the heart. NAFLD is now the most common liver and metabolic disease in the world. However, the upsurge in the prevalence of NAFLD as an emerging risk factor for cardiac arrhythmias has received little attention. In this review, we summarize the clinical evidence and putative pathophysiological mechanisms for the emerging roles of NAFLD in cardiac arrhythmias, with the purpose of highlighting the notion that NAFLD may serve as an independent risk factor and a potential driving force in the development and progression of cardiac arrhythmias.

10.
Hepatology ; 74(3): 1319-1338, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894019

RESUMO

BACKGROUND AND AIMS: NAFLD has become the most common liver disease worldwide but lacks a well-established pharmacological therapy. Here, we aimed to investigate the role of an E3 ligase SH3 domain-containing ring finger 2 (SH3RF2) in NAFLD and to further explore the underlying mechanisms. METHODS AND RESULTS: In this study, we found that SH3RF2 was suppressed in the setting of NAFLD across mice, monkeys, and clinical individuals. Based on a genetic interruption model, we further demonstrated that hepatocyte SH3RF2 deficiency markedly deteriorates lipid accumulation in cultured hepatocytes and diet-induced NAFLD mice. Mechanistically, SH3RF2 directly binds to ATP citrate lyase, the primary enzyme promoting cytosolic acetyl-coenzyme A production, and promotes its K48-linked ubiquitination-dependent degradation. Consistently, acetyl-coenzyme A was significantly accumulated in Sh3rf2-knockout hepatocytes and livers compared with wild-type controls, leading to enhanced de novo lipogenesis, cholesterol production, and resultant lipid deposition. CONCLUSION: SH3RF2 depletion in hepatocytes is a critical aggravator for NAFLD progression and therefore represents a promising therapeutic target for related liver diseases.

12.
Chin Med Sci J ; 36(1): 17-26, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33853705

RESUMO

Objective This study aimed to determine the association of hyperlipidemia with clinical endpoints among hospitalized patients with COVID-19, especially those with pre-existing cardiovascular diseases (CVDs) and diabetes. Methods This multicenter retrospective cohort study included all patients who were hospitalized due to COVID-19 from 21 hospitals in Hubei province, China between December 31, 2019 and April 21, 2020. Patients who were aged < 18 or ≥ 85 years old, in pregnancy, with acute lethal organ injury (e.g., acute myocardial infarction, severe acute pancreatitis, acute stroke), hypothyroidism, malignant diseases, severe malnutrition, and those with normal lipid profile under lipid-lowering medicines (e.g., statin, niacin, fenofibrate, gemfibrozil, and ezetimibe) were excluded. Propensity score matching (PSM) analysis at 1:1 ratio was performed to minimize baseline differences between patient groups of hyperlipidemia and non-hyperlipidemia. PSM analyses with the same strategies were further conducted for the parameters of hyperlipidemia in patients with increased triglyceride (TG), increased low-density lipoprotein cholesterol (LDL-C), and decreased high-density lipoprotein cholesterol (HDL-C). Mixed-effect Cox model analysis was performed to investigate the associations of the 28-days all-cause deaths of COVID-19 patients with hyperlipidemia and the abnormalities of lipid parameters. The results were verified in male, female patients, and in patients with pre-existing CVDs and type 2 diabetes. Results Of 10 945 inpatients confirmed as COVID-19, there were 9822 inpatients included in the study, comprising 3513 (35.8%) cases without hyperlipidemia and 6309 (64.2%) cases with hyperlipidemia. Based on a mixed-effect Cox model after PSM at 1:1 ratio, hyperlipidemia was not associated with increased or decreased 28-day all-cause death [adjusted hazard ratio (HR), 1.17 (95% CI, 0.95-1.44), P =0.151]. We found that the parameters of hyperlipidemia were not associated with the risk of 28-day all-cause mortality [adjusted HR, 1.23 (95% CI, 0.98-1.55), P = 0.075 in TG increase group; 0.78 (95% CI, 0.57-1.07), P = 0.123 in LDL-C increase group; and 1.12 (95% CI, 0.9-1.39), P = 0.299 in HDL-C decrease group, respectively]. Hyperlipidemia was also not significantly associated with the increased mortality of COVID-19 in patients accompanied with CVDs or type 2 diabetes, and in both male and female cohorts. Conclusion Our study support that the imbalanced lipid profile is not significantly associated with the 28-day all-cause mortality of COVID-19 patients, even in those accompanied with CVDs or diabetes. Similar results were also obtained in subgroup analyses of abnormal lipid parameters. Therefore, hyperlipidemia might be not a major causative factor for poor outcome of COVID-19, which provides guidance for the intervention of inpatients during the epidemic of COVID-19.


Assuntos
COVID-19/mortalidade , Hiperlipidemias/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/complicações , COVID-19/terapia , Doenças Cardiovasculares/complicações , Estudos de Casos e Controles , Causas de Morte , China/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Pontuação de Propensão , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco
13.
Curr Med Res Opin ; 37(6): 917-927, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33729889

RESUMO

BACKGROUND: To develop a sensitive and clinically applicable risk assessment tool identifying coronavirus disease 2019 (COVID-19) patients with a high risk of mortality at hospital admission. This model would assist frontline clinicians in optimizing medical treatment with limited resources. METHODS: 6415 patients from seven hospitals in Wuhan city were assigned to the training and testing cohorts. A total of 6351 patients from another three hospitals in Wuhan, 2169 patients from outside of Wuhan, and 553 patients from Milan, Italy were assigned to three independent validation cohorts. A total of 64 candidate clinical variables at hospital admission were analyzed by random forest and least absolute shrinkage and selection operator (LASSO) analyses. RESULTS: Eight factors, namely, Oxygen saturation, blood Urea nitrogen, Respiratory rate, admission before the date the national Maximum number of daily new cases was reached, Age, Procalcitonin, C-reactive protein (CRP), and absolute Neutrophil counts, were identified as having significant associations with mortality in COVID-19 patients. A composite score based on these eight risk factors, termed the OURMAPCN-score, predicted the risk of mortality among the COVID-19 patients, with a C-statistic of 0.92 (95% confidence interval [CI] 0.90-0.93). The hazard ratio for all-cause mortality between patients with OURMAPCN-score >11 compared with those with scores ≤ 11 was 18.18 (95% CI 13.93-23.71; p < .0001). The predictive performance, specificity, and sensitivity of the score were validated in three independent cohorts. CONCLUSIONS: The OURMAPCN score is a risk assessment tool to determine the mortality rate in COVID-19 patients based on a limited number of baseline parameters. This tool can assist physicians in optimizing the clinical management of COVID-19 patients with limited hospital resources.


Assuntos
COVID-19 , Medição de Risco/métodos , COVID-19/epidemiologia , COVID-19/mortalidade , China , Hospitalização/estatística & dados numéricos , Humanos , Itália , Fatores de Risco
14.
Med (N Y) ; 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33521746

RESUMO

Background: To develop a sensitive risk score predicting the risk of mortality in patients with coronavirus disease 2019 (COVID-19) using complete blood count (CBC). Methods: We performed a retrospective cohort study from a total of 13,138 inpatients with COVID-19 in Hubei, China, and Milan, Italy. Among them, 9,810 patients with ≥2 CBC records from Hubei were assigned to the training cohort. CBC parameters were analyzed as potential predictors for all-cause mortality and were selected by the generalized linear mixed model (GLMM). Findings: Five risk factors were derived to construct a composite score (PAWNN score) using the Cox regression model, including platelet counts, age, white blood cell counts, neutrophil counts, and neutrophil:lymphocyte ratio. The PAWNN score showed good accuracy for predicting mortality in 10-fold cross-validation (AUROCs 0.92-0.93) and subsets with different quartile intervals of follow-up and preexisting diseases. The performance of the score was further validated in 2,949 patients with only 1 CBC record from the Hubei cohort (AUROC 0.97) and 227 patients from the Italian cohort (AUROC 0.80). The latent Markov model (LMM) demonstrated that the PAWNN score has good prediction power for transition probabilities between different latent conditions. Conclusions: The PAWNN score is a simple and accurate risk assessment tool that can predict the mortality for COVID-19 patients during their entire hospitalization. This tool can assist clinicians in prioritizing medical treatment of COVID-19 patients. Funding: This work was supported by National Key R&D Program of China (2016YFF0101504, 2016YFF0101505, 2020YFC2004702, 2020YFC0845500), the Key R&D Program of Guangdong Province (2020B1111330003), and the medical flight plan of Wuhan University (TFJH2018006).

15.
Cell Metab ; 33(2): 258-269.e3, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421384

RESUMO

Corticosteroid therapy is now recommended as a treatment in patients with severe COVID-19. But one key question is how to objectively identify severely ill patients who may benefit from such therapy. Here, we assigned 12,862 COVID-19 cases from 21 hospitals in Hubei Province equally to a training and a validation cohort. We found that a neutrophil-to-lymphocyte ratio (NLR) > 6.11 at admission discriminated a higher risk for mortality. Importantly, however, corticosteroid treatment in such individuals was associated with a lower risk of 60-day all-cause mortality. Conversely, in individuals with an NLR ≤ 6.11 or with type 2 diabetes, corticosteroid treatment was not associated with reduced mortality, but rather increased risks of hyperglycemia and infections. These results show that in the studied cohort corticosteroid treatment is associated with beneficial outcomes in a subset of COVID-19 patients who are non-diabetic and with severe symptoms as defined by NLR.


Assuntos
Corticosteroides/uso terapêutico , COVID-19/tratamento farmacológico , Linfócitos/citologia , Neutrófilos/citologia , Corticosteroides/efeitos adversos , Área Sob a Curva , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Humanos , Hiperglicemia/complicações , Hiperglicemia/patologia , Tempo de Internação , Modelos de Riscos Proporcionais , Curva ROC , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Taxa de Sobrevida , Resultado do Tratamento
16.
Hepatology ; 73(1): 104-125, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191345

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, which has no specific pharmacological treatments partially because of the unclear pathophysiological mechanisms. Regulator of G protein signaling (RGSs) proteins are proteins that negatively regulate G protein-coupled receptor (GPCR) signaling. The members of the R4/B subfamily are the smallest RGS proteins in size, and RGS5 belongs to this family, which mediates pluripotent biological functions through canonical G protein-mediated pathways and non-GPCR pathways. This study combined a genetically engineered rodent model and a transcriptomics-sequencing approach to investigate the role and regulatory mechanism of RGS5 in the development of NAFLD. APPROACH AND RESULTS: This study found that RGS5 protects against NAFLD and nonalcoholic steatohepatitis. Using RNA sequencing and an unbiased systematic investigative approach, this study found that the activation of mitogen-activated protein kinase signaling cascades in response to metabolic challenge is negatively associated with hepatic RGS5 expression. Mechanistically, we found that the 64-181 amino-acid-sequence (aa) fragment of RGS5 directly interacts with transforming growth factor beta-activated kinase 1 (TAK1) through the 1-300aa fragment and inhibits TAK1 phosphorylation and the subsequent c-Jun-N-terminal kinase (JNK)/p38 pathway activation. CONCLUSIONS: In hepatocytes, RGS5 is an essential molecule that protects against the progression of NAFLD. RGS5 directly binds to TAK1, preventing its hyperphosphorylation and the activation of the downstream JNK/p38 signaling cascade. RGS5 is a promising target molecule for fine-tuning the activity of TAK1 and for the treatment of NAFLD.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/patologia , MAP Quinase Quinase Quinases/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas RGS/metabolismo , Transdução de Sinais , Animais , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Knockout
17.
Hepatology ; 73(2): 586-605, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32297339

RESUMO

BACKGROUND AND AIMS: Milk fat globule-epidermal growth factor-factor 8 (MFGE8) has been shown to be a critical extracellular molecule that mediates apoptotic signaling in the pathological process of nonalcoholic fatty liver disease (NAFLD). MFGE8 is abundantly expressed in hepatocytes, but its function in the pathogenesis of NAFLD has not been characterized. APPROACH AND RESULTS: In our current study, hepatic MFGE8 showed a protective role in the pathogenesis of NAFLD. Hepatic MFGE8 deletion largely exacerbated lipid accumulation and inflammatory responses in the liver in response to overnutrition. Mechanistically, intercellular MFGE8 was shown to directly bind to apoptosis signal-regulating kinase 1 (ASK1) and to inhibit its dimerization and phosphorylation under a normal diet. However, under metabolic challenges, decreased cytoplasmic MFGE8 facilitated the dimerization and phosphorylation of ASK1 and subsequent mitogen-activated protein kinase signaling in hepatocytes. CONCLUSIONS: Hepatic MFGE8 is an endogenous inhibitor that halts the progression of hepatic steatosis and inflammation. Metabolic challenge-induced loss of intracellular MFGE8 facilitates ASK1 dimerization and phosphorylation. Therefore, maintaining hepatic MFGE8 levels may serve as an alternative strategy for the treatment of NAFLD.

18.
Med (N Y) ; 2(1): 38-48.e2, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33043313

RESUMO

Background: The coronavirus disease 2019 (COVID-19) is a recently emerged respiratory infectious disease with kidney injury as a part of the clinical complications. However, the dynamic change of kidney function and its association with COVID-19 prognosis are largely unknown. Methods: In this multicenter retrospective cohort study, we analyzed clinical characteristics, medical history, laboratory tests, and treatment data of 12,413 COVID-19 patients. The patient cohort was stratified according to the severity of the outcome into three groups: non-severe, severe, and death. Findings: The prevalence of elevated blood urea nitrogen (BUN), elevated serum creatinine (Scr), and decreased blood uric acid (BUA) at admission was 6.29%, 5.22%, and 11.66%, respectively. The trajectories showed the elevation in BUN and Scr levels, as well as a reduction in BUA level for 28 days after admission in death cases. Increased all-cause mortality risk was associated with elevated baseline levels of BUN and Scr and decreased levels of BUA. Conclusions: The dynamic changes of the three kidney function markers were associated with different severity and poor prognosis of COVID-19 patients. BUN showed a close association with and high potential for predicting adverse outcomes in COVID-19 patients for severity stratification and triage. Funding: This study was supported by grants from the National Key R&D Program of China (2016YFF0101504), the National Science Foundation of China (81630011, 81970364, 81970070, 81970011, 81870171, and 81700356), the Major Research Plan of the National Natural Science Foundation of China (91639304), the Hubei Science and Technology Support Project (2019BFC582, 2018BEC473, and 2017BEC001), and the Medical Flight Plan of Wuhan University.

19.
Biosci Rep ; 40(11)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32964914

RESUMO

AIM: The study aims to evaluate protective effects of sophoricoside (Sop) on cardiac hypertrophy. Meanwhile, the potential and significance of Sop should be broadened and it should be considered as an attractive drug for the treatment of pathological cardiac hypertrophy and heart failure. METHODS: Using the phenylephrine (PE)-induced neonatal rat cardiomyocytes (NRCMs) enlargement model, the potent protection of Sop against cardiomyocytes enlargement was evaluated. The function of Sop was validated in mice received transverse aortic coarctation (TAC) or sham surgery. At 1 week after TAC surgery, mice were treated with Sop for the following 4 weeks, the hearts were harvested after echocardiography examination. RESULTS: Our study revealed that Sop significantly mitigated TAC-induced heart dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis. Mechanistically, Sop treatment induced a remarkable activation of AMPK/mTORC1-autophagy cascade following sustained hypertrophic stimulation. Importantly, the protective effect of Sop was largely abolished by the AMPKα inhibitor Compound C, suggesting an AMPK activation-dependent manner of Sop function on suppressing pathological cardiac hypertrophy. CONCLUSION: Sop ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Hence, Sop might be an attractive candidate for the treatment of pathological cardiac hypertrophy and heart failure.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Benzopiranos/farmacologia , Cardiomegalia/prevenção & controle , Ativadores de Enzimas/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Fibrose , Masculino , Camundongos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Transdução de Sinais
20.
Hypertension ; 76(4): 1219-1230, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32862709

RESUMO

Pathological cardiac hypertrophy is one of the major predictors and inducers of heart failure, the end stage of various cardiovascular diseases. However, the molecular mechanisms underlying pathogenesis of pathological cardiac hypertrophy remain largely unknown. Here, we provided the first evidence that STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) is a key negative regulator of this disease. We found that the expression of STEAP3 was reduced in pressure overload-induced hypertrophic hearts and phenylephrine-induced hypertrophic cardiomyocytes. In a transverse aortic constriction-triggered mouse cardiac hypertrophy model, STEAP3 deficiency remarkably deteriorated cardiac hypertrophy and fibrosis, whereas the opposite phenotype was observed in the cardiomyocyte-specific STEAP3 overexpressing mice. Accordingly, STEAP3 significantly mitigated phenylephrine-induced cell enlargement in primary neonatal rat cardiomyocytes. Mechanistically, via RNA-seq and immunoprecipitation-mass screening, we demonstrated that STEAP3 directly bond to Rho family small GTPase 1 and suppressed the activation of downstream mitogen-activated protein kinase-extracellular signal-regulated kinase signaling cascade. Remarkably, the antihypertrophic effect of STEAP3 was largely blocked by overexpression of constitutively active mutant Rac1 (G12V). Our study indicates that STEAP3 serves as a novel negative regulator of pathological cardiac hypertrophy by blocking the activation of the Rac1-dependent signaling cascade and may contribute to exploring effective therapeutic strategies of pathological cardiac hypertrophy treatment.


Assuntos
Cardiomegalia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Oxirredutases/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Oxirredutases/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...