RESUMO
One of the most significant threats to global health since the Second World War is the COVID-19 pandemic. Due to COVID-19 widespread social, environmental, economic, and health concerns. Other unfavourable factors also emerged, including increased trash brought on by high consumption of packaged foods, takeout meals, packaging from online shopping, and the one-time use of plastic products. Due to labour shortages and residents staying at home during mandatory lockdowns, city municipal administrations' collection and recycling capacities have decreased, frequently damaging the environment (air, water, and soil) and ecological and human systems. The COVID-19 challenges are more pronounced in unofficial settlements of developing nations, particularly for developing nations of the world, as their fundamental necessities, such as air quality, water quality, trash collection, sanitation, and home security, are either non-existent or difficult to obtain. According to reports, during the pandemic's peak days (20 August 2021 (741 K cases), 8 million tonnes of plastic garbage were created globally, and 25 thousand tonnes of this waste found its way into the ocean. This thorough analysis attempts to assess the indirect effects of COVID-19 on the environment, human systems, and water quality that pose dangers to people and potential remedies. Strong national initiatives could facilitate international efforts to attain environmental sustainability goals. Significant policies should be formulated like good quality air, pollution reduction, waste management, better sanitation system, and personal hygiene. This review paper also elaborated that further investigations are needed to investigate the magnitude of impact and other related factors for enhancement of human understanding of ecosystem to manage the water, environment and human encounter problems during epidemics/pandemics in near future.
RESUMO
Objective: Rheumatic heart disease (RHD) is a major health problem in the world, particularly in developing countries. This study aimed to predict mitral regurgitation (MR) and mitral stenosis (MS) RHD among children with RHD. Methodology: Data was collected from the Pediatric Cardiology Department at Chaudhry Pervaiz Elahi Institute of Cardiology Multan, Pakistan from March to October 2019. A sample of 561 children aged 4-14 years, who were diagnosed with RHD of either MR or MS, were recruited from the hospital's outpatient department. The presence of multivariate outliers was detected, and different machine learning methods, including subset logistic regression, subset logistic regression after deletion, stepwise winsorized logistic regression, robust logistic regression, subset deep neural network, and random forest models were compared using the area under receiver operating characteristics (ROC) curve, sensitivity, and specificity. Parsimony was also considered in model selection. Results: Out of 561 patients in this study, 75.94% had RHD MR and 24.06% had RHD MS. The average age of study participants was 9.19 ± 2.45 years and of them 55.43% were male. Among the male participants, 58.6 and 45.2% had MR and MS, respectively; and among female participants, those were 70.4 and 29.6%, respectively. Subset logistic regression after deletion appeared as competitive with a discrimination power of 90.1% [95% CI 0.818-0.983]. The sensitivity and specificity of this model were 85.1 and 70.6%. Conclusion: The best predictive model was subset logistic regression after deletion. The predicted method will be used in the decision-making process, which helps early diagnosis of the disease and leads to prevention. The study findings provide the proper guideline for earlier diagnosis of the RHD MR and MS cases among children with RHD in Pakistan.
RESUMO
BACKGROUND: Carbonic anhydrase II (CA-II) is associated with calcification, tumorigenicity, epilepsy, osteoporosis, and several other physiological or pathological processes. CA-II inhibitors can be used to reduce the intraocular pressure usually associated with glaucoma. OBJECTIVE: In search for potent CA-II inhibitors, a series of thiosemicarbazone derivatives (3a-u) was synthesized. METHODS: This series was evaluated against bovine and human carbonic anhydrase II (bCA-II and hCA-II) and their docking studies were carried out. RESULTS: In the preliminary screening, most of the compounds exhibited significant inhibition of bCA-II and hCA-II. The predictive structure-activity relationship suggested that the thiosemicarbazide moiety plays a key role in the inhibition of enzyme activity and substitution at R position and has a remarkable contribution to the overall activity. The kinetic studies of the most active inhibitors of bCA-II (3d, 3e, 3l, 3f, and 3p) and hCA-II (3g) were performed against bCA-II and hCA-II, respectively to investigate their mode of inhibition and dissociation constants (Ki). CONCLUSION: Subsequently, (3e, 3f, 3l and 3p) were identified as competitive inhibitors of bCA-II with Ki values of 5.02-14.70 µM, while (3d) as a noncompetitive inhibitor of bCA-II (Ki = 2.5 ± 0.015 µM), however, (3g) demonstrated competitive inhibition of hCA-II with a Ki value of 5.95 ± 0.002 µM. The selectivity index reflects that compound (3g) is more selective for hCA-II. The binding modes of these compounds with bCA-II and hCA-II were investigated by structure-based molecular docking, and the docking results are in complete agreement with the experimental findings.
Assuntos
Anidrase Carbônica II , Tiossemicarbazonas , Humanos , Bovinos , Animais , Anidrase Carbônica II/metabolismo , Tiossemicarbazonas/farmacologia , Simulação de Acoplamento Molecular , Cinética , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Relação Estrutura-Atividade , Estrutura MolecularRESUMO
Diabetic complications are associated with overexpression of aldose reductase, an enzyme that catalyzes the first step of the polyol pathway. Osmotic stress in the hyperglycemic state is linked with the intracellular accumulation of sorbitol along with the depletion of NADPH and eventually leads to oxidative stress via formation of reactive oxygen species and advanced glycation end products (AGEs). These kinds of mechanisms cause the development of various diabetic complications including neuropathy, nephropathy, retinopathy, and atherosclerotic plaque formation. Various aldose reductase inhibitors have been developed to date for the treatment of diabetic complications, but all have failed in different stages of clinical trials due to toxicity and poor pharmacokinetic profiles. This toxicity is rooted in a nonselective inhibition of both ALR2 and ALR1, homologous enzymes involved in the metabolism of toxic aldehydes such as methylglyoxal and 3-oxyglucosazone. In the present study, we developed a series of thiosemicarbazone derivatives as selective inhibitors of ALR2 with both antioxidant and antiglycation potential. Among the synthesized compounds, 3c exhibited strong and selective inhibition of ALR2 (IC50 1.42 µM) along with good antioxidant and antiglycative properties. The binding mode of 3c was assessed through molecular docking and cluster analysis via MD simulations, while in silico ADME evaluation studies predicted the compounds' druglike properties. Therefore, we report 3c as a drug candidate with promising antioxidant and antiglycative properties that may be useful for the treatment of diabetic complications through selective inhibition of ALR2.
RESUMO
Heterostructures of optical cavities and quantum emitters have been highlighted for enhanced light-matter interactions. A silicon nanosphere, core, and MoS2, shell, structure is one such heterostructure referred to as the core@shell architecture. However, the complexity of the synthesis and inherent difficulties to locally probe this architecture have resulted in a lack of information about its localized features limiting its advances. Here, we utilize valence electron energy loss spectroscopy (VEELS) to extract spatially resolved dielectric functions of Si@MoS2 with nanoscale spatial resolution corroborated with simulations. A hybrid electronic critical point is identified â¼3.8 eV for Si@MoS2. The dielectric functions at the Si/MoS2 interface is further probed with a cross-sectioned core-shell to assess the contribution of each component. Various optical parameters can be defined via the dielectric function. Hence, the methodology and evolution of the dielectric function herein reported provide a platform for exploring other complex photonic nanostructures.
Assuntos
Molibdênio , Nanoestruturas , Eletrônica , Nanoestruturas/química , Silício/químicaRESUMO
Arsenic (As), a class-A human carcinogen, is ubiquitously present in the earth's crust and soil and may enter the air, water, and surface environments through different natural and anthropogenic sources. In this experiment, soil, irrigation water, and rice grains were sampled from conventional rice-growing areas of Punjab, Pakistan. Soil samples were collected from 0 to 15 cm surface soil of rice growing fields, and rice grains were collected from the same field at crop maturity. Irrigation water samples were collected from the source used to irrigate the respective rice fields. Coordinates of sampling locations were noted using a global positioning system, and a locations map was made using ArcGIS. Soil samples were digested in a microwave digester using aqua regia, and plant samples were block digested using nitric acid. Arsenic concentration was determined using an inductively coupled plasma mass spectrometer coupled with an auto-sampler and integrated samples introduction system. The mean concentration of As in rice grains, soil, and water samples was found within the safe limit set by WHO except for a sample from Narowal (148.54 µg l-1) that exceeded the irrigation water standard limit, i.e., 100 µg l-1 for irrigation water. Principal component analysis was performed to reduce the multidimensional space of variables and samples. Through the calculations of estimated daily intake, it has been revealed that the As levels measured in this study would only contribute a small amount (less than 5%) of the total recommended daily intake allowance.
Assuntos
Arsênio , Oryza , Poluentes do Solo , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Contaminação de Alimentos/análise , Humanos , Paquistão , Solo , Poluentes do Solo/análise , Água/análise , Poluentes Químicos da Água/análiseRESUMO
The role of aldose reductase (ALR2) in causing diabetic complications is well-studied, with overactivity of ALR2 in the hyperglycemic state leading to an accumulation of intracellular sorbitol, depletion of cytoplasmic NADPH and oxidative stress and causing a variety of different conditions including retinopathy, nephropathy, neuropathy and cardiovascular disorders. While previous efforts have sought to develop inhibitors of this enzyme in order to combat diabetic complications, non-selective inhibition of both ALR2 and the homologous enzyme aldehyde reductase (ALR1) has led to poor toxicity profiles, with no drugs targeting ALR2 currently approved for therapeutic use in the Western world. In the current study, we have synthesized a series of N-substituted thiosemicarbazones with added phenolic moieties, of which compound 3m displayed strong and selective ALR2 inhibitory activity in vitro (IC50 1.18 µM) as well as promising antioxidant activity (75.95% free radical scavenging activity). The target binding modes of 3m were studied via molecular docking studies and stable interactions with ALR2 were inferred through molecular dynamics simulations. We thus report the N-substituted thiosemicarbazones as promising drug candidates for selective inhibition of ALR2 and possible treatment of diabetic complications.
Assuntos
Complicações do Diabetes , Tiossemicarbazonas , Aldeído Redutase , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologiaRESUMO
Globally, sewage water is considered a cheap and effective alternative source of irrigation and nutrient supplement. For example, in Faisalabad, Pakistan untreated sewage water loaded with potentially toxic elements (PTEs) is being routinely used to grow fodder crops in the peri-urban areas, where PTEs accumulate at different trophic levels and contaminate the food chain. Trophic transfer, bioaccumulation, and biomagnification of hazardous metals in food chains had toxic implications for human health. Currently, the major concern is associated with the consumption of PTEs contaminated fodder by animals and the subsequent translocation into humans via consumption of milk and meat from these animals. This study thus analyzed the concentration of Cd, Cu, Pb and Zn in sewage water, sewage irrigated soil, fodder is grown on such soils and the milk of cows and buffalos to calculate the transfer through water and fodder to animal milk. Overall, concentrations and bioaccumulation factors of Cd and Cu in buffalo milk were higher than the cow milk, whereas it was inverse for the concentration of Zn. Non-significant difference in the bioaccumulation factor for Pb in both buffalo and cow milk was observed. Calculation of the estimated daily intake indicated that there was no health risk associated with the consumption of tested milk samples. However, given the widespread exposure of infants to milk, continuous monitoring of milk quality is recommended to preclude a child's exposure to elevated levels of PTEs.
Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Criança , Animais , Esgotos/análise , Bioacumulação , Metais Pesados/toxicidade , Metais Pesados/análise , Poluentes do Solo/análise , Cádmio/análise , Monitoramento Ambiental , Água , Búfalos , Chumbo , Solo , Ração AnimalRESUMO
Every emerging technology has its pros and cons; health-conscious users pay more importance to healthy and environment-friendly technologies. Based on the UTAUT2 model, we proposed a comprehensive novel model to study the factors influencing consumers' decision-making to adopt the technology. Compared to prior studies that focused on linear models to investigate consumers' technology adoption intentions and use behavior. This study used a Structural Equation Modeling-fuzzy set qualitative comparative analysis (SEM-fsQCA) approach to account for the complexity of customers' decision-making processes in adopting new technology. We collected valid responses from 830 consumers, analyzed them, and evaluated them using a deep learning SEM-fsQCA technique to capture symmetric and asymmetric relations between variables. We have extensively incorporated a health-consciousness attitude as a predictor and mediator to understand better the decision-making toward technology adoption, specifically 5G technology. All the factors tested in our model are statistically significant except the economic factors. Health-consciousness attitude (HCA) and behavioral intention (BI) found significant predictors and valid mediators in the process of 5G technology adoption. FsQCA provided six configurations to achieve high 5G adoption. The findings have significant practical ramifications for telecom corporations, advertisers, government officials, and key policymakers. Additionally, the study added substantial theoretical literature to technology adoption, particularly the adoption of 5G technology.
RESUMO
In this theoretical research, four donor molecules with diphenylamine subphthalocyanine (SubPc) as a common core, flanked with various electron-withdrawing groups at the central position containing Methyl-2-cyanoacrylate in C1, 3-methyl-5-methylene-2-thioxothiazolidin-4-one in C2, 2-(2-methylene-1-oxo-1H-inden-3(2H)-ylidene) malononitrile in C3, and Methyl-2-(5-methylene-4-oxo-2-thioxothiazoliden-3-yl) acetate in C4, have been designed. To analyze photovoltaic applications of all the studied molecules (C1-C4), quantum chemical simulations i.e., absorption profiles, frontier molecular orbitals (FMOs), the density of states (DOS), transition density matrix, and open-circuit voltage, have been performed availing DFT and TD-DFT approach with selected B3LYP functional /6-31G (d,p) level of theory. Among all the substituted molecules, C3 revealed highest molar absorption coefficient (601 nm), efficient electron density transfer in FMOs, and lowest energy band gap (1.70 eV) owing to the elongated conjugation along with the compelling electron-withdrawing nature of its axial acceptor moiety. All investigated molecules showed profound peaks in the visible region of the absorption spectrum as well as had low electron and hole mobilities in contrast to that of the reference (R) molecule. The observed binding energies (in electron-volt) of C2 (0.67), C3 (0.10), and C4 (0.47) molecules are found to be lower than R. Hence, these findings reveal that all designed candidates (C1-C4) could be effective and favorable applicants to enhance the energy efficiency of small molecule (SM) based organic solar cells (OSCs).
Assuntos
Difenilamina , Elétrons , Teoria da Densidade Funcional , Transporte de ElétronsRESUMO
Hypertensive retinopathy (HR) refers to changes in the morphological diameter of the retinal vessels due to persistent high blood pressure. Early detection of such changes helps in preventing blindness or even death due to stroke. These changes can be quantified by computing the arteriovenous ratio and the tortuosity severity in the retinal vasculature. This paper presents a decision support system for detecting and grading HR using morphometric analysis of retinal vasculature, particularly measuring the arteriovenous ratio (AVR) and retinal vessel tortuosity. In the first step, the retinal blood vessels are segmented and classified as arteries and veins. Then, the width of arteries and veins is measured within the region of interest around the optic disk. Next, a new iterative method is proposed to compute the AVR from the caliber measurements of arteries and veins using Parr-Hubbard and Knudtson methods. Moreover, the retinal vessel tortuosity severity index is computed for each image using 14 tortuosity severity metrics. In the end, a hybrid decision support system is proposed for the detection and grading of HR using AVR and tortuosity severity index. Furthermore, we present a new publicly available retinal vessel morphometry (RVM) dataset to evaluate the proposed methodology. The RVM dataset contains 504 retinal images with pixel-level annotations for vessel segmentation, artery/vein classification, and optic disk localization. The image-level labels for vessel tortuosity index and HR grade are also available. The proposed methods of iterative AVR measurement, tortuosity index, and HR grading are evaluated using the new RVM dataset. The results indicate that the proposed method gives superior performance than existing methods. The presented methodology is a novel advancement in automated detection and grading of HR, which can potentially be used as a clinical decision support system.
Assuntos
Retinopatia Hipertensiva , Disco Óptico , Humanos , Retinopatia Hipertensiva/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Vasos Retinianos/diagnóstico por imagemRESUMO
BACKGROUND: Nutritional status among children and adolescents is assessed using growth rates. The aim of this study was to assess age- and gender-specific height, weight, and body mass index (BMI) centiles among children and adolescents relative to World Health Organization (WHO) references. METHODS: A sample of 1040 school-aged children and adolescents aged 3-18 years from Multan District in Pakistan were selected for the study between January and March 2020. Multistage stratified random sampling was used for sample selection. Centile curves of height, weight, and BMI for age and gender were obtained using the lambda-mu-sigma (LMS) method, and results were compared with WHO 2007 references. RESULTS: For boys and girls, the average height was 137.37 ± 8.24 and 135.62 ± 9.64 cm, average weight was 36.32 ± 6.84 and 35.21 ± 7.27 kg, and average BMI was 18.44 ± 2.67 and 18.36 ± 2.91, respectively. The height centiles of boys were higher than the WHO reference, and during the prepubertal period (age 8 years or older) the centiles were lower than the WHO reference. The height centiles of girls were higher than the WHO reference, and during the pubertal period (age 10 years or older) the centiles were lower than the WHO reference. The gender-wise BMI centiles were higher compared to the WHO reference. CONCLUSION: The prevalence of thinness, overweight, and obesity in boys and girls was significantly higher than the WHO reference. The results of this study on centiles are up-to-date and will be used as a standard for comparison.
Assuntos
Estatura , Peso Corporal , Crescimento , Estado Nutricional , Adolescente , Índice de Massa Corporal , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Sobrepeso/epidemiologia , Paquistão/epidemiologia , Valores de Referência , Instituições AcadêmicasRESUMO
Indian blackberry (Syzygium cumini L.) is an evergreen tree in the Myrtaceae family. It is used in traditional medicine due to its significant bioactivities and presence of polyphenols with antioxidant activities. The present study describes the effect of seasonal variations on Indian blackberry leaf essential oil yield and chemical composition, production of fractions from essential oil using high vacuum fractional distillation and slow cooling to low temperature (-50 °C) under vacuum, and bioactivities of the essential oil, fractions, and nanoparticles. The results show that Indian blackberry essential oil yield was higher in spring season as compared to winter season. Indian blackberry essential oil fractionation processes were effective in separating and concentrating compounds with desired bioactivities. The bioactivities shown by magnesium nanoparticles were comparatively higher than barium nanoparticles.
RESUMO
Metal chalcophosphates, M2P2Q6 (M = transition metals; Q = chalcogen), are notable among the van der Waals materials family for their potential magnetic ordering that can be tuned with an appropriate choice of the metal or chalcogen. However, there has not been a systematic investigation of the basic structural evolution in these systems with alloying of the crystal subunits due to the challenge in the diffusion process of mixing different metal cations in the octahedral sites of M2P2Q6 materials. In this work, the P2S5 flux method was used to enable the synthesis of a multilayered mixed metal thiophosphate Fe2-xCoxP2S6 (x = 0, 0.25, 1, 1.75, and 2) system. Here, we studied the structural, vibrational, and electronic fingerprints of this mixed M2P2Q6 system. Structural and elemental analyses indicate a homogeneous stoichiometry averaged through the sample over multiple layers of Fe2-xCoxP2S6 compounds. It was observed that there is a correlation between the intensity of specific phonon modes and the alloying concentration. The increasing Co alloying concentration shows direct relations to the in-plane [P2S6]4- and out-of-plane P-P dimer vibrations. Interestingly, an unusual nonlinear electronic structure dependence on the metal alloying ratio is found and confirmed by two distinct work functions within the Fe2-xCoxP2S6 system. We believe this work provides a fundamental structural framework for mixed metal thiophosphate systems, which may assist in future studies on electronic and magnetic applications of this emerging class of binary cation materials.
RESUMO
The over expression of aldose reductase (ALR2) in the state of hyperglycemia causes the conversion of glucose into sorbitol and initiates polyol pathway. Accumulation of sorbitol in insulin insensitive tissue like peripheral nerves, glomerulus and eyes, induces diabetic complications like neuropathy, nephropathy and retinopathy. For the treatment of diabetic complications, the inhibition of aldose reductase (ALR2) is a promising approach. A series of coumarin-based thiosemicarbazone derivatives was synthesized as potential inhibitor of aldose reductase. Compound N-(2-fluorophenyl)-2-(1-(2-oxo-2H-chromen-3-yl)ethylidene)hydrazinecarbiothioamide (3n) was found to be the most promising inhibitor of ALR2 with an IC50 in micromolar range (2.07 µM) and high selectivity, relative to ALR1. The crystal structure of ALR2 complexed with 3n explored the types of interaction pattern which further demonstrated its high affinity. Compound 3n has excellent lead-likeness, underlined by its physicochemical parameters, and can be considered as a likely prospect for further structural optimization to get a drugable molecule.
Assuntos
Aldeído Redutase/antagonistas & inibidores , Cumarínicos/química , Inibidores Enzimáticos/química , Tiossemicarbazonas/química , Aldeído Redutase/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Cinética , Simulação de Acoplamento Molecular , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-AtividadeRESUMO
The present study involved two pot experiments to investigate the response of mung bean to the individual or combined SO4 2- and selenate application under drought stress. A marked increment in biomass and NPK accumulation was recorded in mung bean seedlings fertilized with various SO4 2- sources, except for CuSO4. Compared to other SO4 2- fertilizers, ZnSO4 application resulted in the highest increase in growth attributes and shoot nutrient content. Further, the combined S and Se application (S + Se) significantly enhanced relative water content (16%), SPAD value (72%), photosynthetic rate (80%) and activities of catalase (79%), guaiacol peroxidase (53%) and superoxide dismutase (58%) in the leaves of water-stressed mung bean plants. Consequently, the grain yield of mung bean was markedly increased by 105% under water stress conditions. Furthermore, S + Se application considerably increased the concentrations of P (47%), K (75%), S (80%), Zn (160%), and Fe (15%) in mung bean seeds under drought stress conditions. These findings indicate that S + Se application potentially increases the nutritional quality of grain legumes by stimulating photosynthetic apparatus and antioxidative machinery under water deficit conditions. Our results could provide the basis for further experiments on cross-talk between S and Se regulatory pathways to improve the nutritional quality of food crops. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00992-6.
RESUMO
Silybum marianum L. commonly known as milk thistle is a medicinally potent plant with a multitude of pharmacological applications. The present investigations demonstrated the effects of Zinc Oxide nanoparticles (ZnO NPs) on callus growth and biosynthesis of silymarin in milk thistle under various light conditions. The callus cultures developed on Murashige and Skoog (MS) basal media containing ZnO NPs (0.15 mg/L), under the dark condition maintained for two weeks, followed by transference into normal light produced the maximum callus fresh weight (2294 mg/L FW). Further, the metabolite profiling revealed that ZnO NPs significantly augmented the production of silymarin and upregulated the antioxidant system in the callus cultures. Maximum TPC (total phenolic content: 37 ± 0.20 mg/g DW), TFC (total flavonoid content: 8.9 ± 0.023), DPPH antioxidant activity (91.5 ± 1.75%), Superoxide dismutase activity (SOD: 4.1 ± 0.045 nM/min/mg FW) and the highest silymarin content (14.6 ± 0.023 mg/g DW) were recorded in the callus cultures developed on MS media supplemented with solitary ZnO NPs (0.15 mg/L). While the callus culture evolved in presence of only PGRs (2,4 D and BA: 2 mg/L, each) accumulated the lesser fresh weight (562 mg/L FW). A higher concentration of ZnO NPs (0.15 mg/L) enhanced the secondary metabolite accumulation and silymarin content in the callus of Silybum marianum. This is the first standardized protocol to be applied on the industrial level for the production of silymarin.
Assuntos
Cardo-MarianoRESUMO
Aim: Indole is an important component of many drug molecules, and its conjugation with thiosemicarbazone moiety would be advantageous in finding lead compounds for the development of diabetic complications. Methodology: We have designed, synthesized and evaluated a series of 17 indole-thiosemicarbazones (3a-q) as aldose reductase (ALR2) and aldehyde reductase (ALR1) inhibitors. Results: After in vitro evaluation, all indole-thiosemicarbazones showed significant inhibition against both enzyme ALR1 and ALR2 with IC50 in range of 0.42-20.7 and 1.02-19.1 µM, respectively. The docking study was also carried out to consider the putative binding of molecules with the target enzymes. Conclusion: Compound 3f was found to be most active and selective for ALR2. The indole-thiosemicarbazones series described here has selective hits for diabetes-mellitus-associated complications.
Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Indóis/química , Tiossemicarbazonas/química , Aldeído Redutase/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Humanos , Imidazolidinas/química , Imidazolidinas/metabolismo , Simulação de Acoplamento Molecular , NADP/química , NADP/metabolismo , Relação Estrutura-Atividade , Tiossemicarbazonas/metabolismoRESUMO
Verticillium wilt is a major limiting factor for sustainable production of cotton but the mechanism of controlling this disease is still poorly understood. Lipoxygenase (LOX)-derived oxylipins have been implicated in defense responses against diverse pathogens; however there is limited information about the functional characterization of LOXs in response to Verticillium dahliae infection. In this study, we report the characterization of a cotton LOX gene, GhLOX2, which phylogenetically clustered into 13-LOX subfamily and is closely related to Arabidopsis LOX2 gene. GhLOX2 was predominantly expressed in leaves and strongly induced following V. dahliae inoculation and treatment of methyl jasmonate (MeJA). RNAi-mediated knock-down of GhLOX2 enhanced cotton susceptibility to V. dahliae and was coupled with suppression of jasmonic acid (JA)-related genes both after inoculation with the cotton defoliating strain V991 or MeJA treatment. Interestingly, lignin contents, transcripts of lignin synthesis genes and H2O2 contents were also decreased in GhLOX2-silenced plants. This study suggests that GhLOX2 is involved in defense responses against infection of V. dahliae in cotton and supports that JA is one of the major defense hormones against this pathogen.
Assuntos
Ascomicetos , Ciclopentanos/metabolismo , Resistência à Doença/genética , Gossypium/genética , Gossypium/microbiologia , Lipoxigenase/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Técnicas de Silenciamento de Genes , Gossypium/enzimologia , Lignina/biossíntese , Lignina/genética , Lipoxigenase/química , Lipoxigenase/classificação , Redes e Vias Metabólicas , Filogenia , Interferência de RNARESUMO
To assess comparative losses of Trianthema portulacastrum (HP) relative to other weeds, the experiment was set during consecutive summer seasons 2018 and 2019 at the Research Farm MNS-University of Agriculture, Multan, Pakistan. Experiment consisted three replications which were laid out under randomized complete block design. Experiment consisted of ten treatments viz: weeds free (whole season), HP free till 20 Days after emergence (DAE), HP free till 40 DAE, HP free till 60 DAE, all weeds free 20 DAE, all weeds free 40 DAE, all weeds free 60 DAE, weedy check (all weeds), weedy check except HP and weedy check containing only HP. During 2018 in all weeds weedy check, maximum HP relative density (33.33%) was observed while in 2019, plot where weeds were controlled from growing till 20 DAE showed (80%) relative density at 30 DAE. HP maximum frequency (66.67%, 77.78%) and relative frequency (66%, 100%) was recorded at 45 DAE in plots where HP was kept controlled till 20 DAE and all weeds kept controlled till 20 DAE, respectively. Maximum number of grains per cob (738, 700.68), 1000 grain weight (306.66, 271.51 g) and grain yield (6150, 8015 kg hec-1) were recorded in plots which were kept all weed free till 60 DAE. As the competition period of weeds increased over 40 DAE, it substantially reduced yield of maize. Keeping the plots HP free till 40 DAE in the maize fields with HP as the major dominating weed, likely increase in maize grain yield is up to 30% compared to the fields where HP left un attended throughout the growing season. However, if maize field is infested with a mix of weeds with more than one dominating weeds including HP, compared to weedy situation the whole season, 30% higher grain yield can be obtained if all weeds are kept controlled till 40 DAE. Hence it can be concluded that whether the farmers face heavy HP infestation only or the mix of weeds as dominating weeds, in either case farmer should control weeds within first 40 days in maize field for better grain yield.