Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 416: 125865, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492813

RESUMO

Anaerobic biological treatment technologies are one of the major hotspots of antibiotic resistance genes (ARGs). Previous studies have applied the electrochemical process to improve biogas production, however, it was challenged that high voltages might promote membrane permeability and reactive oxygen species overproduction to promote ARGs proliferation. Herein, the biogas production and ARGs proliferation in an anaerobic electrochemical membrane bioreactor (AnEMBR) were investigated at the gradient voltages of 0-0.9 V. Results show the reactor performances (average CH4 production and current generation) were distinctly improved with the increase of applied voltage, and reached the optimum at 0.9 V. However, long-term application (>30 day) of 0.9 V deteriorated the reactor performances. Meanwhile, the relative abundances of most target ARGs in the supernatant and effluent of AnEMBR at 0.9 V increased by 0.68-1.55 and 0.42-1.26 logs compared to those before applying voltage, respectively. After disconnecting the circuit, these ARGs abundances all decreased to the original level. Significant correlations between intlI and ARGs (e.g., tetA, tetQ, sulI, and sulII) were observed, indicating horizontal gene transfer may contribute to the increased ARGs. Moreover, the shift of microbial communities caused by the applied voltage enriched potential ARGs-hosts (e.g., Tolumonas), contributing to the proliferation of ARGs.


Assuntos
Antibacterianos , Biocombustíveis , Anaerobiose , Antibacterianos/farmacologia , Reatores Biológicos , Proliferação de Células , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
2.
J Hazard Mater ; 423(Pt A): 127088, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482077

RESUMO

Antibiotic resistance has become a global public health problem. Recently, various environmental pollutants have been reported to induce the proliferation of antibiotic resistance. However, the impact of multiple pollutants (e.g., heavy metals and antibiotics), which more frequently occur in practical environments, is poorly understood. Herein, one widely distributed heavy metal (Ag+) and one frequently detected antibiotic (tetracycline) were chosen to investigate their coexisting effect on the proliferation of antibiotic resistance in the activated sludge system. Results show that the co-occurrence of Ag+ and tetracycline at environmentally relevant concentrations exhibited no distinct inhibition in reactor performances. However, they inhibited the respiratory activity by 42%, destroyed the membrane structure by 218%, and increased membrane permeability by 29% compared with the blank control bioreactor. Moreover, the relative abundances of target antibiotic resistance genes (ARGs) (e.g., tetA, blaTEM-1, and sulII) in effluent after exposure of coexisting Ag+ and tetracycline were increased by 92-1983% compared with those in control reactor, which were 1.1-4.3 folds higher than the sum of the sole ones. These were possibly attributed to the enrichments of antibiotic-resistant bacteria. The results would illumine the coexisting effect of heavy metals and antibiotics on the dissemination of ARGs in activated sludge system.

3.
Water Res ; 203: 117529, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388499

RESUMO

To date, eutrophication becomes a great concern of vulnerable aquatic systems. Dissolved organic phosphorus (DOP) discharged from wastewater treatment plant (WWTP) holds a large source of phosphorus in receiving water. However, due to the complexity of DOP, their variation and fate in WWTP remain unknown at the molecular level, and are always overlooked. Here, the variation of DOP in a WWTP was uncovered via Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Results show that 95% of DOP in the influent could be removed by the secondary biological treatment processes. The removed DOP species were mainly lipids with the molecular characteristics of low oxygen content, low unsaturation and low aromaticity. Meanwhile, during biological treatments, some new DOP species, especially lignin/carboxylic rich alicyclic molecules (CRAM) that possessed high oxygen content, high unsaturation and high aromaticity, were produced and released into the secondary effluent. In the subsequent tertiary treatment, coagulation by aluminum salt tended to remove high molecular weight and high oxygen content DOP species in the secondary effluent, which was complementary to the biological treatment. However, the sand filter usually retained microorganisms, which would result in the generation of new DOP species in this process. During the final ultraviolet disinfection process, DOP was effectively mineralized to phosphate, especially the species with high molecular weight and highly unsaturated aromatic DOP species (e.g., lignin/CRAM and tannin), which had higher UV absorbance. The revealed variation of DOP in WWTP is beneficial to optimize the treatment processes to enhance the removal of DOP.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Espectrometria de Massas , Fósforo , Poluentes Químicos da Água/análise
4.
Trends Biotechnol ; 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34284891

RESUMO

Hypersaline wastewater is difficult to treat due to the inhibition of salt stress on microbes' viability and metabolic capabilities. Haloarchaea, native microorganisms that thrive in hypersaline habitats, overcome this key obstacle naturally. This review provides a comprehensive overview of the metabolic versatility of Haloarchaea in hypersaline wastewater treatment, including carbon, nitrogen, phosphorus, sulfur, and heavy metal metabolism. It also analyzes factors affecting pollutant removal and addresses metabolic mechanisms. Additionally, haloarchaea microbial characteristics and strategies to cope with salt stress are highlighted. Finally, the biotechnological potential of biomolecules produced from haloarchaea is investigated. To get better insight into the potential of haloarchaea, a deeper investigation of basic metabolism and more in-depth studies of their genomics and applications in actual wastewater are also necessary.

5.
J Hazard Mater ; 420: 126672, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329092

RESUMO

Earthworms have shown their effectiveness in reducing the abundances of antibiotic resistance genes (ARGs) from solid waste. However, the mechanisms of the reduced ARGs by earthworm and whether the solid waste would affect the ARGs profile in earthworm gut were poorly understood. Herein, the patterns of ARGs and microbial communities in digested sludge-amended soil and earthworm gut after 80-day cultivation were investigated. Results show that the enrichment of ARGs (e.g., tetA, tetQ, and sulII) in soil caused by digested sludge-amendment was temporary and would recover to their original levels before amendment. In addition, earthworms could contribute to the further reduction of ARG abundances, which was mainly attributed to their gut digestion via shifting the microbial community (e.g., attenuating the anaerobes). However, the amended soil could significantly increase ARGs abundance in the earthworm gut, which may enhance the potential risk of ARGs spread via the food chain. These findings may provide a new sight on the control of ARGs occurrence and dissemination in sludge-amended soil ecosystem with consideration of earthworms.

6.
Sci Total Environ ; 771: 144787, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548726

RESUMO

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, is frequently detected in aqueous environments, and could be assimilated by vegetable plants to possess potential threats to human and animal health through food chains. However, plant uptake of CIP in different chemical speciation has still far from clear now. Thus, the toxicity and uptake of CIP by rice plants were investigated under different solution pH, owing to its contribution to different chemical speciation of CIP. Results display that high pH-driven changes of CIP from cation (CIP+) to anion (CIP-) decreased its adsorption and uptake by excised roots and intact plants, respectively. However, CIP concentrations in roots, stems and leaves all exhibited no significant differences with increasing solution pH. Moreover, six intermediates of CIP were detected and two possible transformation pathways were proposed in rice plants, including firstly oxidation and following consecutive cleavage of piperazine ring. After accumulated in plant tissues, CIP significantly inhibited the plant growth, decreased the photosynthetic pigments contents and enhanced the antioxidant enzyme activities in a concentration-dependent manner. Besides, high pH exacerbated the growth inhibition and changed the oxidative damage responses of rice plants to CIP. These findings indicate that the uptake and toxicity of CIP in rice plants were influenced by solution pH-driven changes of its chemical speciation.


Assuntos
Ciprofloxacina , Oryza , Adsorção , Ciprofloxacina/toxicidade , Fluoroquinolonas , Humanos , Água
7.
J Hazard Mater ; 408: 124428, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160787

RESUMO

Antibiotic resistance has been regarded as a global concern and biological wastewater treatment plants (WWTPs) are ideal hotbeds for the emergence and propagation of antibiotic resistance genes (ARGs). Extracellular polymeric substances (EPS), one of the primary components of activated sludge, might affect the distribution of extracellular ARGs in supernatant and EPS matrix, and thus alter their uptake potential by microbial cells. Herein, the presence and significance of EPS-associated ARGs in activated sludge from four WWTPs were assessed. Seven typical ARGs (sulI, sulII, blaTEM-1, tetA, tetO, tetQ, tetW) and class I integron (intI1) in EPS-associated, cell-free, and intracellular DNA were quantified. Results show that the absolute abundances of EPS-associated, cell-free, and intracellular ARGs were 5.90 × 106-6.45 × 109, 5.53 × 104-4.58 × 106, and 2.68 × 108-1.79 × 1011 copies/g-volatile suspended solids, respectively. The absolute abundances of EPS-associated ARGs were 0.2-4.6 orders of magnitude higher than those of the corresponding cell-free ARGs. Considering the higher DNA contents in EPS, the transformation abilities of EPS-associated ARGs were 3.3-236.3 folds higher than those of cell-free ARGs. Therefore, EPS-associated ARGs are an important source of extracellular ARGs, and it may play a crucial role in horizontal gene transfer via transformation in WWTPs.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Matriz Extracelular de Substâncias Poliméricas/genética , Genes Bacterianos , Águas Residuárias
8.
J Hazard Mater ; 402: 123846, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254818

RESUMO

Persulfate-based advanced oxidation technology exhibits great potential for hazardous organic pollutant removal from wastewater. Acceleration of pollutant degradation needs to be elucidated, particularly for heterogeneous catalytic systems. In this study, manganese oxide ordered mesoporous carbon composites (MnOx@OMC) were prepared by nano-casting method and used for persulfate activation to degrade phenol. Kinetics analysis indicate that the rate of phenol degradation using MnOx@OMC composites was improved by 34.9 folds relative to that using a mixture of MnOx and OMC. The phenol toxicity towards Caenorhabditis elegans could be totally reduced within 8 min. The different roles of MnOx and OMC in persulfate activation were confirmed to validate their synergistic effect. MnOx provided major active sites for persulfate activation in accordance with the surface Mn3+/Mn4+ cycle to induce SO4•- radicals. The OMC matrix provided the adsorption sites to enrich phenol molecules on the catalytic surface and promote the interfacial electron transfer process for persulfate activation. Moreover, a novel kinetic model with two distinct kinetic stages was established to verify the effects of phenol and persulfate on phenol removal.

9.
J Hazard Mater ; 401: 123376, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32652424

RESUMO

Imidazolium based ionic liquids (ILs) have been extensively used in the various industrial fields, however, the dependence of their structure on toxicity and bioavailability by plants is not clear. Thus, in this study, uptake of imidazolium based ILs with different alkyl chain lengths (e.g., [C2mim]+ and [C8mim]+) by ryegrass and their toxicity to plant growth were investigated. Results show that the two ILs could be removed by ryegrass with high efficiencies, and a higher uptake efficiency and accumulation was observed for [C2mim]+ with shorter chain length compared with that for [C8mim]+. A higher growth inhibition of ryegrass by [C8mim]+ was observed compared with that by [C2mim]+, indicating the long alkyl chain length of ILs had a negative effect on the plant growth. ILs taken up by ryegrass was retained in the roots and their translocation from roots to shoots was restricted. The IL concentration in roots was 0.68 mg/g-fresh weight for [C2mim]+ and 0.08 mg/g- fresh weight for [C8mim]+ when the ryegrass was exposed to 10 mg/L ILs. This study proved that plant assimilation of ILs depended on their alky chain lengths, which would be useful for understanding the fate of ILs with various structures in phytoremediation for ILs-contaminated water.


Assuntos
Líquidos Iônicos , Lolium , Biodegradação Ambiental , Transporte Biológico , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade
10.
Water Res ; 185: 116248, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32777597

RESUMO

Perfluorooctanoic acid (PFOA), an emerging and persistent pollutant, could cause toxicity effects on aquatic organisms. However, this was generally assessed under high exposure concentrations of PFOA and nutrient-enriched conditions, which was not accordant with the actual environments. Therefore, to comprehensively understand the toxicity effects of PFOA on aquatic organisms, the cellular responses of microalgae, Chlorella pyrenoidosa, to PFOA under different concentrations (≤ 1.0 mg/L) and nutrient conditions were investigated in this study. Results show that PFOA at concentrations less than 1.0 mg/L had no significant effects on algal growth and chlorophyll contents, and no oxidative damages were generated to destroy membrane integrity and morphology. However, N,P-limited and -starved conditions significantly decreased algal growth and chlorophyll contents, and induced oxidative stresses to ruin the structure and function of cell membrane. Moreover, the deficiency of P had more severe negative effect on algae than that of N, and they both influenced the toxicity responses of microalgae to 1.0 mg/L PFOA. The adsorption and uptake percentages of PFOA by algal cells were both less than 10%, and increased adsorption but decreased uptake of PFOA amounts occurred under N,P-limited and -starved conditions. These findings will be useful to understand the toxicity effects of PFOA on microalgae in aquatic environments.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Caprilatos , Fluorcarbonetos , Nutrientes , Poluentes Químicos da Água/toxicidade
11.
Bioresour Technol ; 313: 123654, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32540192

RESUMO

Extracellular polymeric substances (EPS), one of the main components of activated sludge, could complex with pollutants and thus influence their fate in wastewater treatment system. In this work, the roles of EPS in resisting sulfamethazine (SMZ) shocks were investigated in a continuous flow membrane bioreactor. Results show that SMZ could be intercepted in the EPS of activated sludge during the lag phase of biodegradation. EPS acted as a potential reservoir against SMZ shocks, guaranteeing undetectable SMZ in the effluent. The increased production of EPS in responding to SMZ shocks improved the binding capability of EPS to SMZ. The critical roles of microbial EPS in removing bio-refractory contaminants such as sulfonamides are probably underestimated previously.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias , Esgotos , Sulfametazina , Sulfonamidas
12.
Water Res ; 179: 115885, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32402864

RESUMO

Free DNA bases are widely present in the environments, and can be utilized by bacteria for their nucleic acids synthesis or as nutrition sources. In sunlit natural waters, these free bases probably undergo photodegradation which would change the bioavailable bases contents. Though the photodegradation of DNA has been investigated, the photodegradation behaviors of free bases may be quite different from those of DNA-confined bases in consideration of their different chemical environments. Herein, the photodegradation of four free bases (guanine, adenine, thymine and cytosine) was investigated. Results show that direct photodegradation of free bases in phosphate buffer caused by UV was slow. However, the photodegradation of these free bases were greatly enhanced in dissolved organic matter (DOM) solution. In the presence of 10-50 mg/L DOM, the photodegradation rates of free bases were increased by 1.85-14.6 times compared to the controls without DOM. DOM could result in indirect photodegradation by producing hydroxyl radical (•OH) and singlet oxygen (1O2) under irradiation, and this indirect photodegradation enhanced and dominated the free bases photodegradation. The •OH was involved in all four bases photodegradation, while the 1O2 only participated in guanine photodegradation. In phosphate buffer, the fastest photodegradation bases were pyrimidine, however, guanine became the fastest photodegradation base in DOM solution due to the selective oxidation of guanine by 1O2. In summary, DOM may be a determinant for free bases photodegradation in natural waters and thereby deeply influence free bases fates in aquatic environments.


Assuntos
Poluentes Químicos da Água , DNA , Radical Hidroxila , Fotólise , Oxigênio Singlete
13.
Water Res ; 172: 115538, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007675

RESUMO

In nature, many microorganisms show resistance to toxic selenite by reducing selenite to non-soluble and low toxic elemental selenium. Extracellular polymeric substances (EPS), a high-molecular-weight biopolymers originated from microbial metabolism, contain many reducing groups and can induce reductive transformation of pollutants. However, the roles of EPS and its redox state in reductive detoxification or reduction removal of selenite, respectively, remain unknown yet. Herein, the reduction of selenite by different sources of EPS was investigated. Selenite was proved to be reduced by EPS and partly transformed to elemental selenium. The formed elemental selenium was mainly selenium nanoparticles confirmed by transmission electron microscopy coupled with energy dispersive spectroscopy. The redox state of EPS governed selenite reduction and elemental selenium formation, and the reduced state of EPS was in favor of selenite reduction. Dissolved oxygen concentration in water regulated EPS redox state and influenced selenite reduction. The thiols, aldehyde and phenolic groups in EPS were responsible for selenite reduction. Under selenite stress, EPS was capable of increasing cell survivability by enhancing microorganisms-mediated selenite reduction. This work revealed the previously undiscovered roles of EPS in selenite reduction and elemental selenium formation in aquatic environments and also suggested a possible crucial role of EPS in selenium biogeochemical cycle.


Assuntos
Nanopartículas , Selênio , Matriz Extracelular de Substâncias Poliméricas , Oxirredução , Ácido Selenioso
14.
Environ Sci Technol ; 54(3): 1614-1622, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31976657

RESUMO

Extracellular DNA (eDNA), which is derived from lysis or secretion of cells, is ubiquitous in various environments and crucial for gene dissemination, bacterial metabolism, biofilm integrity, and aquatic monitoring. However, these processes are largely influenced by damage to eDNA. Photodamage to eDNA, one of the most important types of DNA damage in natural waters, thus far remains unclear. In particular, the roles of the ubiquitous dissolved organic matter (DOM) in this process have yet to be determined. In this study, eDNA photodamage, including both deoxynucleoside damage and strand breaks, proved to be significantly influenced by DOM. DOM competed with eDNA for photons to inhibit the direct photodamage of eDNA. Nevertheless, DOM was photosensitized to produce reactive oxygen species (ROS) (i.e., hydroxyl radicals (·OH) and singlet oxygen (1O2)) to enhance the indirect photodamage of eDNA. The ·OH induced damage to four deoxynucleosides and strand breaks, and the 1O2 substantially enhanced deoxyguanosine damage. The presence of DOM changed the main photodamage products of deoxynucleosides, additional oxidation products induced by ROS formed besides pyrimidine dimers caused by UV. Results indicate that DOM-mediated indirect photodamage contributed significantly to eDNA photodamage in most water bodies. This study revealed the previously unrecognized crucial role of DOM in the decay of eDNA in waters.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , DNA , Oxirredução , Espécies Reativas de Oxigênio , Oxigênio Singlete
15.
J Hazard Mater ; 386: 121972, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887564

RESUMO

Ionic liquids, a kind of emerging and persistent organic contaminants, always coexist with heavy metals in aquatic and terrestrial environments. However, the feasibility of phytoremediation to remove ionic liquids and heavy metals co-contaminants is still unclear. Thus, in this study, the hydroponic experiment was conducted to investigate the combined effect of 1-butyl-3-methylimidazolium bromide ([C4mim]+Br-) and cadmium (Cd2+) on growth and physiological indictors of perennial ryegrass, together with their uptake and translocation by plants. Results show that the exposure of ryegrass to [C4mim]+ and Cd2+ mixture significantly inhibited the biomass growth and affected the photosynthetic pigments contents in leaves. The increases of lipid peroxidation and catalase, peroxidase activity were also observed under the co-exposure experiments. The mixture toxicity of [C4mim]+ and Cd2+ to ryegrass growth showed an additive effect predicted by concentration addition and independent action. [C4mim]+ uptake and acropetal translocation by ryegrass were significantly inhibited with dosing Cd2+. In contrast, [C4mim]+ had no obvious effect on Cd2+ uptake by ryegrass, while enhanced Cd2+ translocation from roots to shoots occurred with increasing [C4mim]+ dosages. These results indicate that the co-contamination of ionic liquids and heavy metals would affect their fates during phytoremediation.


Assuntos
Cádmio/toxicidade , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Lolium/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Transporte Biológico , Cádmio/metabolismo , Interações Medicamentosas , Imidazóis/metabolismo , Líquidos Iônicos/metabolismo , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Modelos Teóricos , Poluentes Químicos da Água/metabolismo
16.
Environ Pollut ; 255(Pt 2): 113327, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600703

RESUMO

Fish-associated antibiotic resistance genes (ARGs) have attracted increasing attention due to their potential risks to human beings via the food chain. However, data are scarce regarding the antibiotic resistance in fish themselves. Herein, the antibiotic resistance genes (ARGs) were assessed in the gut of four major Chinese freshwater carp (i.e., silver carp, grass carp, bighead carp, and crucian carp) from food retail markets. Results show that the abundances of target ARGs (e.g., tetA, tetO, tetQ, tetW, sulI, sulII, and blaTEM-1) and class 1 integrase (intI1) were in the range 9.4 × 10-6 - 1.6 × 10-1 and 6.7 × 10-5 - 5.2 × 10-2 gene copies per 16S rRNA gene, respectively. The sulI, sulII, and tetQ strongly correlated with silver and mercury resistance genes (e.g., silE and merR). The microbial taxa of fish gut could be partly separated among retail markets based on the PCA analysis. About 15.0% of the OTUs in fish gut were shared and 74.5% of the shared OTUs were identified as Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, and Proteobacteria. These phyla may constitute the core microbiota in the guts of the four Chinese freshwater carp. The possible ARG hosts were revealed based on the network analysis, and the presence of pathogen-associated resistant genera in fish gut highlights the need to fully understand their potential human health risks.


Assuntos
Carpas/microbiologia , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Alimentos Marinhos/microbiologia , Acidobacteria/efeitos dos fármacos , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Chloroflexi/efeitos dos fármacos , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Cianobactérias/efeitos dos fármacos , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Firmicutes/efeitos dos fármacos , Firmicutes/genética , Firmicutes/isolamento & purificação , Água Doce/microbiologia , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Metais Pesados/toxicidade , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
17.
Environ Sci Technol ; 53(22): 13374-13381, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31663333

RESUMO

An increasing amount of attention has been given to antimicrobial resistance in the environment because of its substantial threat to human health. The effluent from municipal wastewater treatment plants has been regarded as one of the important sources for the spread of antibiotic resistance genes (ARGs). However, conventional disinfection techniques fail to effectively remove ARGs from effluents. In this work, in situ synthesized hydrated manganese oxide (HMO) coupled with permanganate was applied for the first time in ARG removal from the effluent of wastewater treatment plants. The results show that five ARGs (sulI, sulII, tetQ, tetO, and tetW) as well as the intI1 and 16S rRNA genes had removal efficiencies of 2.46-4.23 logs, which were significantly higher than those obtained by using these reagents individually. This implied that there was a synergistic effect between permanganate and HMO toward the removal of ARGs. Moreover, the contributions of HMO coagulation and permanganate oxidation to ARG removal were semiquantitatively studied, which demonstrated that destruction of the microbial cells by oxidation and removal of the extracellular ARGs released by coagulation were the two main processes in this system. The results of this study provide an alternative method for ARG removal from the effluent of wastewater treatment plants with high efficiencies to control the spreading of ARGs.


Assuntos
Antibacterianos , Águas Residuárias , Resistência Microbiana a Medicamentos , Genes Bacterianos , Humanos , Compostos de Manganês , Óxidos , RNA Ribossômico 16S
18.
Water Res ; 165: 115016, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31470283

RESUMO

Three-dimensional electrochemical reactor (3DER) is a highly efficient technology for refractory wastewater treatment. Particle electrodes filled between anode and cathode are the core units of 3DER, determining the treatment efficiency of wastewater. However, particle electrodes deactivation due to catalytic sites coverage seriously impedes the continuous operation of 3DER. In this work, granular sludge carbon (GSC) particle electrodes being resistant to deactivation are fabricated by pyrolyzing the mixture of waste sludge, polymethyl methacrylate (PMMA), and copper tailings, whose performances are evaluated by degrading rhodamine B (RhB) wastewater in a continuous-flow 3DER. Results indicate that hierarchical-pore structure comprising macro-, meso-, and micropores is developed in GSC-10-CTs by doping 10 g PMMA and 5 g copper tailings into 100 g waste sludge. PMMA contributes to construct macropores, which is essential for the mass transfer of RhB into GSC particle electrodes of centimeter-size. Copper tailings promote the formation of meso- and micro-pores in GSCs, as well as improving the electrochemical properties. Consequently, GSC-10-CTs packed 3DER exhibits the highest removal efficiency and lowest energy consumption for RhB treatment. In addition, the compressive strength of GSC-10-CTs is enhanced by copper tails, that is crucial to fill into 3DER as particle electrodes. The high-efficient and cost-effective GSC-10-CTs fabricated by waste materials have the potential of substituting commercial granular activated carbon catalysts in the future, consequently promoting the application of 3DER in wastewater treatment.


Assuntos
Polimetil Metacrilato , Esgotos , Cobre , Eletrodos , Eliminação de Resíduos Líquidos , Águas Residuárias
19.
Environ Sci Technol ; 53(18): 10732-10740, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31469271

RESUMO

Extracellular antibiotic resistance genes (eARGs) contribute to antibiotic resistance, and as such, they pose a serious threat to human health. eARGs, regarded as an emerging contaminant, have been widely detected in various bodies of water. Degradation greatly weakens their distribution potential and environmental risks. Dissolved organic matter (DOM), mainly consisted of humic substances, carbohydrates, and organic acids, is ubiquitous in diverse waters and significantly affects the degradation of coexisting contaminants. However, the photodegradation of eARGs in natural water, especially regarding the roles of DOM in this process, remains unknown. Herein, we investigated the eARGs photodegradation in waters with and without DOM. Illumination has been found to effectively photodegrade eARGs, and this process was significantly enhanced by DOM. Further experiments revealed that photosensitization of DOM produced hydroxyl radicals (•OH) to enhance plasmid strand breaks and produced singlet oxygen (1O2) to accelerate the guanine oxidation, which in turn promoted the photodegradation of plasmid-carried eARGs. Transformation assays indicated that eARGs transformation efficiencies were reduced after their photodegradation. The presence of DOM accelerated the decreases of eARGs transformation efficiencies under illumination. DOM concentration and some ions (e.g., NO3-, NO2-, HCO3-, Br-, and Fe3+) affected •OH or 1O2 levels, further influencing the photodegradation of eARGs. Overall, eARGs photodegradation in aquatic environments is a crucial process both in the reduction of eARGs concentrations and in transformation efficiencies. This work facilitated us to better understand the fate of eARGs in waters.


Assuntos
Transtornos de Fotossensibilidade , Poluentes Químicos da Água , Antibacterianos , Resistência Microbiana a Medicamentos , Humanos , Substâncias Húmicas , Fotólise
20.
Environ Int ; 130: 104902, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228781

RESUMO

The aerobic granular sludge with larger size and more compact spherical structure generally shows excellent performance in antibiotic removal, yet little is known about the long-term effect of environmentally-relevant concentration (µg/L) of antibiotics on the proliferation of antibiotic resistance genes (ARGs) and microbial community in aerobic granules. Herein, a sequencing batch reactor (SBR) was set up with dosing different concentrations (0-500 µg/L) of tetracycline to investigate its influences on microbial communities and ARG levels in aerobic granular sludge. Results show that the bioreactor could effectively remove chemical oxygen demand (COD), nitrogen, and tetracycline during the long-term operation. The quantitative polymerase chain reaction (qPCR) analysis shows that tetracycline at µg/L level could greatly enhance the absolute and relative abundances of tetA, sulII, and blaTEM-1 in the effluent and aerobic granules, indicating tetracycline could serve as a selection pressure on the development of ARGs corresponding to different types of antibiotics in aerobic granules. Pearson's correlation analysis also implies that sulII and blaTEM-1 were correlated strongly with tetA. Moreover, the presence of tetracycline altered the microbial communities and diversity of the effluent and aerobic granules in the bioreactor. These findings would advance our understanding of the proliferation and development of ARGs in aerobic granules under tetracycline pressure and serve as a foundation to guide the application of aerobic granular sludge for treatment of antibiotic-containing wastewater.


Assuntos
Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Microbiota , Esgotos/microbiologia , Tetraciclina/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Monitoramento Ambiental , Microbiota/efeitos dos fármacos , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...