Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Filtros adicionais











Intervalo de ano
1.
Neuroimage ; 198: 231-241, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31102735

RESUMO

Diffusion tractography is routinely used to study white matter architecture and brain connectivity in vivo. A key step for successful tractography of neuronal tracts is the correct identification of tract directions in each voxel. Here we propose a fingerprinting-based methodology to identify these fiber directions in Orientation Distribution Functions, dubbed ODF-Fingerprinting (ODF-FP). In ODF-FP, fiber configurations are selected based on the similarity between measured ODFs and elements in a pre-computed library. In noisy ODFs, the library matching algorithm penalizes the more complex fiber configurations. ODF simulations and analysis of bootstrapped partial and whole-brain in vivo datasets show that the ODF-FP approach improves the detection of fiber pairs with small crossing angles while maintaining fiber direction precision, which leads to better tractography results. Rather than focusing on the ODF maxima, the ODF-FP approach uses the whole ODF shape to infer fiber directions to improve the detection of fiber bundles with small crossing angle. The resulting fiber directions aid tractography algorithms in accurately displaying neuronal tracts and calculating brain connectivity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30892657

RESUMO

BACKGROUND: Intramedullary spinal cord neoplasms (ISCN) pose significant management challenges. Advances in magnetic resonance imaging (MRI) (such as diffusion tensor imaging, DTI) have been utilized to determine the infiltrative nature and resectability of ISCN. However, this has not been applied to intraoperative decision making. OBJECTIVE: To present a case series of 2 patients with ISCN, the first to combine use of DTI, pre- and intraoperative 3-dimensional (3D) virtual reality imaging, and microscope integrated navigation with heads-up display. METHODS: Two patients who underwent surgery for ISCN were included. DTI images were obtained and 3D images were created using Surgical Theater (Surgical Theater SRP, Version 7.4.0, Cleveland, Ohio). Fiducials were used to achieve accurate surface registration to C4. Navigation confirmed the levels of laminectomy necessary. The microscope was integrated with Brainlab (Brainlab AG Version 3.0.5, Feldkirchen, Germany) and the tumor projected in the heads-up display. Surgical Theater was integrated with Brainlab to allow for real time evaluation of the 3D tractography. RESULTS: Case 1: All tracts were pushed away from the tumor, suggesting it was not infiltrative. Surgical Theater and Brainlab assisted in confirming midline despite the abnormal swelling of the cord so the myelotomy could be performed. The heads-up display outline demonstrated excellent correlation to the tumor. Gross total resection was achieved. Diagnosis of ependymoma was confirmed. Case 2: Some tracts were going through the tumor itself, suggesting an infiltrative process. Surgical Theater and Brainlab again allowed for confirmation of the midline raphe. Near total resection of the enhancing portion was achieved. Diagnosis of glioblastoma was confirmed. CONCLUSION: This is a proof of concept application where multi-modal imaging technology was utilized for safest maximal ISCN resection.

4.
Brain ; 142(3): 633-646, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715195

RESUMO

Spinal cord lesions detected on MRI hold important diagnostic and prognostic value for multiple sclerosis. Previous attempts to correlate lesion burden with clinical status have had limited success, however, suggesting that lesion location may be a contributor. Our aim was to explore the spatial distribution of multiple sclerosis lesions in the cervical spinal cord, with respect to clinical status. We included 642 suspected or confirmed multiple sclerosis patients (31 clinically isolated syndrome, and 416 relapsing-remitting, 84 secondary progressive, and 73 primary progressive multiple sclerosis) from 13 clinical sites. Cervical spine lesions were manually delineated on T2- and T2*-weighted axial and sagittal MRI scans acquired at 3 or 7 T. With an automatic publicly-available analysis pipeline we produced voxelwise lesion frequency maps to identify predilection sites in various patient groups characterized by clinical subtype, Expanded Disability Status Scale score and disease duration. We also measured absolute and normalized lesion volumes in several regions of interest using an atlas-based approach, and evaluated differences within and between groups. The lateral funiculi were more frequently affected by lesions in progressive subtypes than in relapsing in voxelwise analysis (P < 0.001), which was further confirmed by absolute and normalized lesion volumes (P < 0.01). The central cord area was more often affected by lesions in primary progressive than relapse-remitting patients (P < 0.001). Between white and grey matter, the absolute lesion volume in the white matter was greater than in the grey matter in all phenotypes (P < 0.001); however when normalizing by each region, normalized lesion volumes were comparable between white and grey matter in primary progressive patients. Lesions appearing in the lateral funiculi and central cord area were significantly correlated with Expanded Disability Status Scale score (P < 0.001). High lesion frequencies were observed in patients with a more aggressive disease course, rather than long disease duration. Lesions located in the lateral funiculi and central cord area of the cervical spine may influence clinical status in multiple sclerosis. This work shows the added value of cervical spine lesions, and provides an avenue for evaluating the distribution of spinal cord lesions in various patient groups.

5.
Neuroimage ; 184: 901-915, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300751

RESUMO

The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data is challenging because of the large variability related to acquisition parameters and image artifacts. In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion contrast, size, location, and shape. The goal of this study was to develop a fully-automatic framework - robust to variability in both image parameters and clinical condition - for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS and non-MS cases. Scans of 1042 subjects (459 healthy controls, 471 MS patients, and 112 with other spinal pathologies) were included in this multi-site study (n = 30). Data spanned three contrasts (T1-, T2-, and T2∗-weighted) for a total of 1943 vol and featured large heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for PropSeg (p ≤ 0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of -15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on a variety of MRI contrasts. The proposed framework is open-source and readily available in the Spinal Cord Toolbox.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Redes Neurais (Computação) , Medula Espinal/patologia , Humanos , Imagem por Ressonância Magnética/métodos , Variações Dependentes do Observador , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Sci Rep ; 8(1): 15458, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337562

RESUMO

AICARFT is a folate dependent catalytic site within the ATIC gene, part of the purine biosynthetic pathway, a pathway frequently upregulated in cancers. LSN3213128 is a potent (16 nM) anti-folate inhibitor of AICARFT and selective relative to TS, SHMT1, MTHFD1, MTHFD2 and MTHFD2L. Increases in ZMP, accompanied by activation of AMPK and cell growth inhibition, were observed with treatment of LY3213128. These effects on ZMP and proliferation were dependent on folate levels. In human breast MDA-MB-231met2 and lung NCI-H460 cell lines, growth inhibition was rescued by hypoxanthine, but not in the A9 murine cell line which is deficient in purine salvage. In athymic nude mice, LSN3213128 robustly elevates ZMP in MDA-MB-231met2, NCI-H460 and A9 tumors in a time and dose dependent manner. Significant tumor growth inhibition in human breast MDA-MB231met2 and lung NCI-H460 xenografts and in the syngeneic A9 tumor model were observed with oral administration of LSN3213128. Strikingly, AMPK appeared activated within the tumors and did not change even at high levels of intratumoral ZMP after weeks of dosing. These results support the evaluation of LSN3213128 as an antineoplastic agent.

7.
World J Nucl Med ; 17(3): 188-194, 2018 Jul-Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30034284

RESUMO

Fluorodeoxyglucose (FDG) positron emission tomography-magnetic resonance (PET/MR) is useful for the evaluation of cognitively-impaired patients. This study aims to assess two different attenuation correction (AC) methods (Dixon-MR and atlas-based) versus index-standard computed tomography (CT) AC for the visual interpretation of regional hypometabolism in patients with cognitive impairment. Two board-certified nuclear medicine physicians blindly scored brain region FDG hypometabolism as normal versus hypometabolic using two-dimensional (2D) and 3D FDG PET/MR images generated by MIM software. Regions were quantitatively assessed as normal versus mildly, moderately, or severely hypometabolic. Hypometabolism scores obtained using the different methods of AC were compared, and interreader, as well as intra-reader agreement, was assessed. Regional hypometabolism versus normal metabolism was correctly classified in 16 patients on atlas-based and Dixon-based AC map PET reconstructions (vs. CT reference AC) for 94% (90%-96% confidence interval [CI]) and 93% (89%-96% CI) of scored regions, respectively. The averaged sensitivity/specificity for detection of any regional hypometabolism was 95%/94% (P = 0.669) and 90%/91% (P = 0.937) for atlas-based and Dixon-based AC maps. Interreader agreement for detection of regional hypometabolism was high, with similar outcome assessments when using atlas- and Dixon-corrected PET data in 93% (Κ =0.82) and 93% (Κ =0.84) of regions, respectively. Intrareader agreement for detection of regional hypometabolism was high, with concordant outcome assessments when using atlas- and Dixon-corrected data in 93%/92% (Κ =0.79) and 92/93% (Κ =0.78). Despite the quantitative advantages of atlas-based AC in brain PET/MR, routine clinical Dixon AC yields comparable visual ratings of regional hypometabolism in the evaluation of cognitively impaired patients undergoing brain PET/MR and is similar in performance to CT-based AC. Therefore, Dixon AC is acceptable for the routine clinical evaluation of dementia syndromes.

8.
Invest Radiol ; 53(12): 742-747, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30020139

RESUMO

BACKGROUND AND PURPOSE: High-resolution T2-weighted sequences are frequently used in magnetic resonance imaging (MRI) studies to assess the cerebellopontine angle and internal auditory canal (IAC) in sensorineural hearing loss patients but have low yield and lengthened examinations. Because image content in the Wavelet domain is sparse, compressed sensing (CS) that uses incoherent undersampling of k-space and iterative reconstruction can accelerate MRI acquisitions. We hypothesized that an accelerated CS T2 Sampling Perfection with Application optimized Contrasts using different flip angle Evolution (SPACE) sequence would produce acceptable diagnostic quality for IAC screening protocols. MATERIAL AND METHODS: Seventy-six patients underwent 3 T MRI using conventional SPACE and a CS T2 SPACE prototype sequence for screening the IACs were identified retrospectively. Unilateral reconstructions for each sequence were separated, then placed into mixed folders for independent, blinded review by 3 neuroradiologists during 2 sessions 4 weeks apart. Radiologists reported if a lesion was present. Motion and visualization of specific structures were rated using ordinal scales. McNemar, Wilcoxon, Cohen κ, and Mann-Whitney U tests were performed for accuracy, equivalence, and interrater and intrarater reliability. RESULTS: T2 SPACE using CS reconstruction reduced scan time by 80% to 50 seconds and provided 98.7% accuracy for IAC mass detection by 3 raters. Radiologists preferred conventional images (0.7-1.0 reduction on 5-point scale, P < 0.001), but rated CS SPACE acceptable. The 95% confidence for reduction in any cerebellopontine angle, IAC, or fluid-filled inner ear structure assessment with CS SPACE did not exceed 0.5. CONCLUSIONS: Internal auditory canal screening MRI protocols can be performed using a 5-fold accelerated T2 SPACE sequence with compressed sensing while preserving diagnostic image quality and acceptable lesion detection rate.

9.
Front Neurol ; 9: 267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740389

RESUMO

Background: Primary extranodal marginal zone lymphoma (MZL) of the dura is a rare neoplastic entity in the central nervous system (CNS). Methods: We used literature searches to identify previously reported cases of primary dural MZL. We also reviewed clinical, pathologic, and radiographic data of an adult patient with concurrent dural MZL and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Results: We identified 104 cases of dural MZL in the literature. None of them presented concurrently with another type of non-Hodgkin lymphoma. This is the first report of composite lymphoma consisting of dural MZL and CLL/SLL in the bone marrow and lymph nodes. Conclusion: Primary dural MZL is a rare, indolent low-grade CNS lymphoma, with a relatively good prognosis. Its treatment is multidisciplinary and often requires surgical intervention due to brain compression, along with low to moderate doses of radiotherapy and/or systemic chemotherapy.

11.
J Med Chem ; 60(23): 9599-9616, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29072452

RESUMO

A hallmark of cancer is unbridled proliferation that can result in increased demand for de novo synthesis of purine and pyrimidine bases required for DNA and RNA biosynthesis. These synthetic pathways are frequently upregulated in cancer and involve various folate-dependent enzymes. Antifolates have a proven record as clinically used oncolytic agents. Our recent research efforts have produced LSN 3213128 (compound 28a), a novel, selective, nonclassical, orally bioavailable antifolate with potent and specific inhibitory activity for aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT), an enzyme in the purine biosynthetic pathway. Inhibition of AICARFT with compound 28a results in dramatic elevation of 5-aminoimidazole 4-carboxamide ribonucleotide (ZMP) and growth inhibition in NCI-H460 and MDA-MB-231met2 cancer cell lines. Treatment with this inhibitor in a murine based xenograft model of triple negative breast cancer (TNBC) resulted in tumor growth inhibition.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/uso terapêutico , Fosforribosilaminoimidazolcarboxamida Formiltransferase/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Feminino , Antagonistas do Ácido Fólico/farmacocinética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Masculino , Camundongos , Camundongos Nus , Modelos Moleculares , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Tiofenos/química , Tiofenos/farmacocinética , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
12.
Clin Imaging ; 45: 37-50, 2017 Sep - Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28601735

RESUMO

Diffusion imaging of the spine has the potential to change clinical management, but is challenging due to the small size of the cord and susceptibility artifacts from adjacent structures. Reduced field-of-view (rFOV) diffusion can improve image quality by decreasing the echo train length. Over the past 2 years, we have acquired a rFOV diffusion sequence for MRI spine protocols on most inpatients and emergency room patients. We provide selected imaging diagnoses to illustrate the utility of including diffusion spine MRI in clinical practice. Our experiences support using diffusion MRI to improve diagnostic certainty and facilitate prompt treatment or clinical management.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Serviço Hospitalar de Emergência , Hospitalização , Doenças da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Artefatos , Criança , Protocolos Clínicos , Difusão , Imagem Ecoplanar/métodos , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Pacientes Internados , Masculino , Pessoa de Meia-Idade , Doenças da Medula Espinal/diagnóstico , Doenças da Medula Espinal/patologia , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/patologia , Coluna Vertebral/patologia , Adulto Jovem
13.
J Neuroophthalmol ; 37(2): 187-196, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459736

RESUMO

BACKGROUND: Clinical orbital MRI protocols are routinely used to study the optic nerves and exclude compressive lesions, infarctions, or inflammation. However, the small caliber and divergent oblique orientations of the optic nerves make it challenging to characterize them well with conventional MRI, especially since adjacent air-filled bony structures distort the MRI signal and motion is a problem even in cooperative, healthy volunteers. EVIDENCE ACQUISITION: Over the past 3 years we have experimented with multiple novel MRI approaches and sequences to better characterize the optic nerves. The perfect MRI protocol would be quantitative and sensitive to subtle optic nerve pathologic changes, provide high spatial resolution, be rapidly acquired, and resistant to motion degradation. RESULTS: This review provides an update of recent MRI sequence innovations for the optic nerves being currently translated into clinical practice. Methods discussed include rapid MRI with compressed sensing or simultaneous multislice approaches, postprocessing techniques for quantitative T2 mapping or track density imaging, and multiple MRI sequences for measuring diffusion in the optic nerves. CONCLUSIONS: Recently-developed orbit-specific MRI coils, quantitative sequences, and rapid acquisition techniques can improve our future ability to study optic nerve pathologies noninvasively. As advanced MRI becomes more proficient at characterizing the optic nerves, its role in the clinical management of patients should increase.


Assuntos
Imagem por Ressonância Magnética/métodos , Nervo Óptico/patologia , Neurite Óptica/diagnóstico , Humanos , Reprodutibilidade dos Testes
14.
J Neuroradiol ; 44(3): 175-184, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28185669

RESUMO

Functional neurosurgery is a rapidly growing field with exciting future potential applications. This article describes currently used implanted electronic devices for neurologic stimulation and monitoring. The devices to be reviewed include invasive EEG electrodes, deep brain stimulator, motor cortex stimulator, responsive neurostimulation, osteo-integrated hearing aid, middle ear implant, cochlear implant, auditory brainstem implant, vagal nerve stimulator and spinal cord stimulator. Emphasis is placed on the normal components, function, positioning, potential complications and MRI safety of these devices. Understanding the motivations and appropriate use of these implantable devices is critical for clinical neuroradiologists to provide relevant imaging interpretation and protocols for patients and referring physicians.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/terapia , Terapia por Estimulação Elétrica/instrumentação , Imagem por Ressonância Magnética , Neuroimagem , Procedimentos Neurocirúrgicos/instrumentação , Eletrodos Implantados , Segurança de Equipamentos , Humanos
15.
Neuroimage Clin ; 14: 363-370, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239545

RESUMO

INTRODUCTION: Quantitative T2 mapping may provide an objective biomarker for occult nervous tissue pathology in relapsing-remitting multiple sclerosis (RRMS). We applied a novel echo modulation curve (EMC) algorithm to identify T2 changes in normal-appearing brain regions of subjects with RRMS (N = 27) compared to age-matched controls (N = 38). METHODS: The EMC algorithm uses Bloch simulations to model T2 decay curves in multi-spin-echo MRI sequences, independent of scanner, and scan-settings. T2 values were extracted from normal-appearing white and gray matter brain regions using both expert manual regions-of-interest and user-independent FreeSurfer segmentation. RESULTS: Compared to conventional exponential T2 modeling, EMC fitting provided more accurate estimations of T2 with less variance across scans, MRI systems, and healthy individuals. Thalamic T2 was increased 8.5% in RRMS subjects (p < 0.001) and could be used to discriminate RRMS from healthy controls well (AUC = 0.913). Manual segmentation detected both statistically significant increases (corpus callosum & temporal stem) and decreases (posterior limb internal capsule) in T2 associated with RRMS diagnosis (all p < 0.05). In healthy controls, we also observed statistically significant T2 differences for different white and gray matter structures. CONCLUSIONS: The EMC algorithm precisely characterizes T2 values, and is able to detect subtle T2 changes in normal-appearing brain regions of RRMS patients. These presumably capture both axon and myelin changes from inflammation and neurodegeneration. Further, T2 variations between different brain regions of healthy controls may correlate with distinct nervous tissue environments that differ from one another at a mesoscopic length-scale.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imagem por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/patologia , Adulto , Algoritmos , Análise de Variância , Área Sob a Curva , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem
16.
J Neural Transm (Vienna) ; 124(3): 293-302, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27778099

RESUMO

Current consensus diagnostic criteria for multiple system atrophy (MSA) consider dementia a non-supporting feature, although cognitive impairment and even frank dementia are reported in clinical practice. Mini-Mental State Examination (MMSE) is a commonly used global cognitive scale, and in a previous study, we established an MSA-specific screening cut-off score <27 to identify cognitive impairment. Finally, MSA neuroimaging findings suggest the presence of structural alterations in patients with cognitive deficits, although the extent of the anatomical changes is unclear. The aim of our multicenter study is to better characterize anatomical changes associated with cognitive impairment in MSA and to further investigate cortical and subcortical structural differences versus healthy controls (HC). We examined retrospectively 72 probable MSA patients [50 with normal cognition (MSA-NC) and 22 cognitively impaired (MSA-CI) based on MMSE <27] and compared them to 36 HC using gray- and white-matter voxel-based morphometry and fully automated subcortical segmentation. Compared to HC, MSA patients showed widespread cortical (bilateral frontal, occipito-temporal, and parietal areas), subcortical, and white-matter alterations. However, MSA-CI showed only focal volume reduction in the left dorsolateral prefrontal cortex compared with MSA-NC. These results suggest only a marginal contribution of cortical pathology to cognitive deficits. We believe that cognitive dysfunction is driven by focal fronto-striatal degeneration in line with the concept of "subcortical cognitive impairment".


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/complicações , Disfunção Cognitiva/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/complicações , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imagem Tridimensional , Imagem por Ressonância Magnética , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/psicologia , Neuroimagem , Tamanho do Órgão , Reconhecimento Automatizado de Padrão , Estudos Retrospectivos , Substância Branca/diagnóstico por imagem
17.
Clin Cancer Res ; 23(2): 562-574, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521447

RESUMO

PURPOSE: Investigation of clonal heterogeneity may be key to understanding mechanisms of therapeutic failure in human cancer. However, little is known on the consequences of therapeutic intervention on the clonal composition of solid tumors. EXPERIMENTAL DESIGN: Here, we used 33 single cell-derived subclones generated from five clinical glioblastoma specimens for exploring intra- and interindividual spectra of drug resistance profiles in vitro In a personalized setting, we explored whether differences in pharmacologic sensitivity among subclones could be employed to predict drug-dependent changes to the clonal composition of tumors. RESULTS: Subclones from individual tumors exhibited a remarkable heterogeneity of drug resistance to a library of potential antiglioblastoma compounds. A more comprehensive intratumoral analysis revealed that stable genetic and phenotypic characteristics of coexisting subclones could be correlated with distinct drug sensitivity profiles. The data obtained from differential drug response analysis could be employed to predict clonal population shifts within the naïve parental tumor in vitro and in orthotopic xenografts. Furthermore, the value of pharmacologic profiles could be shown for establishing rational strategies for individualized secondary lines of treatment. CONCLUSIONS: Our data provide a previously unrecognized strategy for revealing functional consequences of intratumor heterogeneity by enabling predictive modeling of treatment-related subclone dynamics in human glioblastoma. Clin Cancer Res; 23(2); 562-74. ©2016 AACR.


Assuntos
Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Heterogeneidade Genética , Glioblastoma/tratamento farmacológico , Animais , Evolução Clonal/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Epilepsia Open ; 2(4): 481-484, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29588980

RESUMO

Malformations of cortical development are associated with epilepsy and cognitive dysfunction, and can occur in patients with SCN1A ion channel mutations. We report a novel and subtle bandlike subcortical heterotopia on integrated positron emission tomography-magnetic resonance imaging ( PET-MRI) in a patient with treatment-resistant epilepsy due to a de novo KCNQ1 frameshift mutation. Our case highlights the potential for other channel mutations to cause both epilepsy and cortical malformations. Further scrutiny of high contrast resolution MRI studies is warranted for patients with KCNQ1 and other epilepsy genes to further define their extended phenotype.

20.
J Nucl Med ; 57(6): 918-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26837338

RESUMO

UNLABELLED: Simultaneous PET/MR of the brain is a promising technology for characterizing patients with suspected cognitive impairment or epilepsy. Unlike CT, however, MR signal intensities do not correlate directly with PET photon attenuation correction (AC), and inaccurate radiotracer SUV estimation can limit future PET/MR clinical applications. We tested a novel AC method that supplements standard Dixon-based tissue segmentation with a superimposed model-based bone compartment. METHODS: We directly compared SUV estimation between MR-based AC and reference CT AC in 16 patients undergoing same-day PET/CT and PET/MR with a single (18)F-FDG dose for suspected neurodegeneration. Three Dixon-based MR AC methods were compared with CT: standard Dixon 4-compartment segmentation alone, Dixon with a superimposed model-based bone compartment, and Dixon with a superimposed bone compartment and linear AC optimized specifically for brain tissue. The brain was segmented using a 3-dimensional T1-weighted volumetric MR sequence, and SUV estimations were compared with CT AC for whole-image, whole-brain, and 91 FreeSurfer-based regions of interest. RESULTS: Modifying the linear AC value specifically for brain and superimposing a model-based bone compartment reduced the whole-brain SUV estimation bias of Dixon-based PET/MR AC by 95% compared with reference CT AC (P < 0.05), resulting in a residual -0.3% whole-brain SUVmean bias. Further, brain regional analysis demonstrated only 3 frontal lobe regions with an SUV estimation bias of 5% or greater (P < 0.05). These biases appeared to correlate with high individual variability in frontal bone thickness and pneumatization. CONCLUSION: Bone compartment and linear AC modifications result in a highly accurate MR AC method in subjects with suspected neurodegeneration. This prototype MR AC solution appears equivalent to other recently proposed solutions and does not require additional MR sequences and scanning time. These data also suggest that exclusively model-based MR AC approaches may be adversely affected by common individual variations in skull anatomy.


Assuntos
Osso e Ossos/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Idoso de 80 Anos ou mais , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA