Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2000416, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374446

RESUMO

Small interfering RNA (siRNA) has been considered as a highly promising therapeutic agent for human cancer treatment including glioblastoma (GBM), which is a fatal disease without effective therapy methods. However, siRNA-based GBM therapy is seriously hampered by a number of challenges in siRNA brain delivery including poor stability, short blood circulation, low blood-brain barrier (BBB) penetration, and tumor accumulation, as well as inefficient siRNA intracellular release. Herein, an Angiopep-2 (Ang) functionalized intracellular-environment-responsive siRNA nanocapsule (Ang-NCss (siRNA)) is successfully developed as a safe and efficient RNAi agent to boost siRNA-based GBM therapy. The experimental results demonstrate that the developed Ang-NCss (siRNA) displays long circulation in plasma, efficient BBB penetration capability, and GBM accumulation and retention, as well as responsive intracellular siRNA release due to the unique design of small size (25 nm) with polymeric shell for siRNA protection, Ang functionalization for BBB crossing and GBM targeting, and disulfide bond as a linker for intracellular-environment-responsive siRNA release. Such superior properties of Ang-NCss (siRNA) result in outstanding growth inhibition of orthotopic U87MG xenografts without causing adverse effects, achieving remarkably improved survival benefits. The developed siRNA nanocapsules provide a new strategy for RNAi therapy of GBM and beyond.

2.
Acta Pharmacol Sin ; 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32467570

RESUMO

Central nervous system (CNS) disorders represent a broad spectrum of brain ailments with short- and long-term disabilities, and nanomedicine-based approaches provide a new therapeutic approach to treating CNS disorders. A variety of potential drugs have been discovered to treat several neuronal disorders; however, their therapeutic success can be limited by the presence of the blood-brain barrier (BBB). Furthermore, unique immune functions within the CNS provide novel target mechanisms for the amelioration of CNS diseases. Recently, various therapeutic approaches have been applied to fight brain-related disorders, with moderate outcomes. Among the various therapeutic strategies, nanomedicine-based immunotherapeutic systems represent a new era that can deliver useful cargo with promising pharmacokinetics. These approaches exploit the molecular and cellular targeting of CNS disorders for enhanced safety, efficacy, and specificity. In this review, we focus on the efficacy of nanomedicines that utilize immunotherapy to combat CNS disorders. Furthermore, we detailed summarize nanomedicine-based pathways for CNS ailments that aim to deliver drugs across the BBB by mimicking innate immune actions. Overview of how nanomedicines can utilize multiple immunotherapy pathways to combat CNS disorders.

3.
Colloids Surf B Biointerfaces ; 190: 110968, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193073

RESUMO

Owing to the excellent biocompatibility, hyperbranched polyglycerols (hbPGs) are one of the most promising polymers and widely employed in drug delivery. Presented as an excellent bioinert coating material, hbPGs can significantly improve the biosafety of biomedical nanomaterials. However, it is still unclear what specific properties of hbPGs are the key effectors to bioinertness. Here, atomic force microscopy was employed to test the Young's modulus and adhesion of hbPGs, spin-coated onto mica substrate. High Young's modulus indicated that the hbPGs cannot be further compressed and low adhesion implied that it is not easy to form hbPGs aggregators. This could owe to the intramolecular hydrogen bond. Morphology characterization of hbPGs self-assembled monolayer onto Si(100) substrate, confirmed the lower adhesion among different hbPGs and indicated their biofouling properties. Further confocal laser microscopy of cell membrane modified with alkyl chain (C18)-modified hbPGs and hbPGs-NH2, confirmed that the antifouling properties of hbPGs are determined by terminal glycerol units. Our findings demonstrated that only hbPGs with entire terminal surface can be used as perspective cell membrane modification skeleton.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32196867

RESUMO

Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure-property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e- pathway with a high H2 O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.

5.
Nano Lett ; 20(3): 1637-1646, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32013452

RESUMO

Nanotechnology-based RNA interference (RNAi) has shown great promise in overcoming the limitations of traditional clinical treatments for glioblastoma (GBM). However, because of the complexity of brain physiology, simple blood-brain barrier (BBB) penetration or tumor-targeting strategies cannot entirely meet the demanding requirements of different therapeutic delivery stages. Herein, we developed a charge conversional biomimetic nanoplatform with a three-layer core-shell structure to programmatically overcome persistent obstacles in siRNA delivery to GBM. The resulting nanocomplex presents good biocompatibility, prolonged blood circulation, high BBB transcytosis, effective tumor accumulation, and specific uptake by tumor cells in the brain. Moreover, red blood cell membrane (RBCm) disruption and effective siRNA release can be further triggered elegantly by charge conversion from negative to positive in the endo/lysosome (pH 5.0-6.5) of tumor cells, leading to highly potent target-gene silencing with a strong anti-GBM effect. Our study provides an intelligent biomimetic nanoplatform tailored for systemically siRNA delivery to GBM, leveraging Angiopep-2 peptide-modified, immune-free RBCm and charge conversional components. Improved therapeutic efficacy, higher survival rates, and minimized systemic side effects were achieved in orthotopic U87MG-luc human glioblastoma tumor-bearing nude mice.

6.
Lab Chip ; 20(3): 655-664, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31934716

RESUMO

Time-resolved luminescence detection using long-lived probes with lifetimes in the microsecond region have shown great potential in ultrasensitive and multiplexed bioanalysis. In flow cytometry, however, the long lifetime poses a significant challenge to measure wherein the detection window is often too short to determine the decay characteristics. Here we report a time-resolved microfluidic flow cytometer (tr-mFCM) incorporating an acoustic-focusing chip, which allows slowing down of the flow while providing the same detection conditions for every target, achieving accurate lifetime measurement free of autofluorescence interference. Through configuration of the flow velocity and detection aperture with respect to the time-gating sequence, a multi-cycle luminescence decay profile is captured for every event under maximum excitation and detection efficiency. A custom fitting algorithm is then developed to resolve europium-stained polymer microspheres as well as leukemia cells against abundant fluorescent particles, achieving counting efficiency approaching 100% and lifetime CVs (coefficient of variation) around 2-6%. We further demonstrate lifetime-multiplexed detection of prostate and bladder cancer cells stained with different europium probes. Our acoustic-focusing tr-mFCM offers a practical technique for rapid screening of biofluidic samples containing multiple cell types, especially in resource-limited environments such as regional and/or underdeveloped areas as well as for point-of-care applications.

7.
Nanoscale ; 12(3): 1948-1957, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31907500

RESUMO

Iron detection is one of the critical markers to diagnose multiple blood-related disorders that correspond to various biological dysfunctions. The currently available anemia detection approach can be used only for pre-treated blood samples that interfere with the actual iron level in blood. Real-time detection approaches with higher sensitivity and specificity are certainly needed to cope with the commercial level clinical analyses. Herein, we presented a novel strategy to determine the blood iron that can be easily practiced at commercial levels. The blend of well-known iron-cyanide chemistry with nanotechnology is advantageous with ultrahigh sensitivity in whole blood analysis without any pre-treatments. This approach is a combined detection system of the conventional assay (UV-visible spectroscopy) with surface-enhanced Raman scattering (SERS). Organic cyanide modified silver nanoparticles (cAgNPs) can selectively respond to Fe3+ ions and Hb protein with a detection limit of 10 fM and 0.46 µg mL-1, respectively, without being affected by matrix interfering species in the complex biological fluid. We confirmed the clinical potential of our new cAgNPs by assessing iron-status in multiple anemia patients and normal controls. Our SERS-based iron quantitation approach is highly affordable for bulk-samples, cheap, quick, flexible, and useful for real-time clinical assays. Such a method for metal-chelation has extendable features of therapeutics molecular tracking within more complex living systems at cellular levels.

9.
Biomaterials ; 229: 119576, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31704467

RESUMO

Dual-modal imaging guided photodynamic therapy (PDT) of multifunctional nanocomposites holds great promise for precision tumor theranostics. However, poor heterogeneous interfacial compatibility between functional components, low hydrophilicity and complicated preparation of nanocomposites remain major obstacles for further bioapplication. Herein, a facile central metal-derived co-assembly strategy is developed to effectively integrate gadolinium porphyrin (GdTPP) contrast agent and Zinc porphyrin (ZnTPP) photosensitizer into a homogeneous GdTPP/ZnTPP nanocomposites (GZNs). GZNs possesses the following advantages: (1) Greatly improved interfacial compatibility facilitated by incorporating two metalporphyrins with same group (phenyl-) and different central metal atoms (Zn and Gd) leading to higher yield (4.7-5 fold) than either monocomponent nanoparticles. (2) Poor dispersity of GdTPP nanoparticles is greatly improved after integrating with ZnTPP blocks. (3) The GZNs inherit excellent fluorescence imaging, high relaxation rate (8.18 mM-1 s-1) and singlet oxygen production from two raw metalporphyrins. After camouflaging with homotypic cancer cell membrane for immunologic escape, the HeLa membrane coated GZNs (mGZNs) show enhanced in vivo MR/FL imaging guided anti-tumor targeting efficiency of 80.6% for HeLa cells. Our new strategy using central metal-derived co-assembly of homogeneous building blocks greatly improves interfacial compatibility to achieve combined functions for visualized cancer theranostics.

10.
Nat Commun ; 10(1): 5083, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704937

RESUMO

Nanoscale transport through nanopores and live-cell membranes plays a vital role in both key biological processes as well as biosensing and DNA sequencing. Active translocation of DNA through these nanopores usually needs enzyme assistance. Here we present a nanopore derived from truncated helicase E1 of bovine papillomavirus (BPV) with a lumen diameter of c.a. 1.3 nm. Cryogenic electron microscopy (cryo-EM) imaging and single channel recording confirm its insertion into planar lipid bilayer (BLM). The helicase nanopore in BLM allows the passive single-stranded DNA (ssDNA) transport and retains the helicase activity in vitro. Furthermore, we incorporate this helicase nanopore into the live cell membrane of HEK293T cells, and monitor the ssDNA delivery into the cell real-time at single molecule level. This type of nanopore is expected to provide an interesting tool to study the biophysics of biomotors in vitro, with potential applications in biosensing, drug delivery and real-time single cell analysis.

11.
Chemistry ; 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31529545

RESUMO

The ampoule method provides a promising pathway towards the controllable synthesis of novel electrocatalysts for water electrolysis due to its straightforward manipulation of reaction conditions, accessible experimental design, and controlled environment. This Concept introduces the development of the ampoule method and anticipates its application in electrocatalyst synthesis for water electrolysis. First, the history, device configuration, and merits of the ampoule method are briefly introduced. Afterwards, typical materials synthesized by the ampoule method are discussed. Then, recent process in applying the ampoule method to synthesize electrocatalysts for water electrolysis is highlighted. Finally, opportunities and potentials of this method in facilitating electrocatalyst synthesis for water electrolysis are discussed.

12.
Methods Mol Biol ; 2054: 263-282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482461

RESUMO

The blood-brain barrier (BBB) is a major challenge for the treatment of central nervous system (CNS) diseases. The BBB strictly regulates the movement of molecules into and out of the brain, and therefore protects the brain from noxious agents. However, for this reason the BBB also acts as a major obstacle that prevents most therapeutic molecules from getting into the target site of the brain. Therefore, it is essential to develop an efficient and general approach to overcome the BBB and transport the drug to the targeted region. Nanoparticle-based drug delivery systems are emerging as a promising drug delivery platform, due to their distinct advantages of tunable biophysical properties such as surface chemistry, size, and shape leading to various biological actions (like clearance, biodistribution, and biocompatibility) in the body. Therefore, it was hypothesized that the surface and shape of nanoparticles will influence their BBB permeation efficiency. Here, we describe a series of upconversion nanoparticles with different surfaces (oleic acid-free, DNA-modified, Silica coating, and PEG-encapsulated), PEGylated UCNPs with various shapes were generated (including sphere and rod). The cellular uptake ability, biodistribution, and BBB penetration of those UCNPs were assessed in cultured cells (NSC-34 neuron- like cells) and in vivo (zebrafish models).

13.
Adv Pharm Bull ; 9(2): 262-270, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31380252

RESUMO

Purpose: Hydrophobic nutraceuticals are suffering from water solubility and physicochemical stabilities once administered to the body or food matrixes. The present study depicts the successful formulation of a zein-carboxymethyl cellulose (CMC) complex to stabilize a water in oil (W/O) emulsion to protect them from environmental and gastrointestinal conditions. The formulated water in oil in water (W/O/W) system was used for nanoencapsulating of hydrophobic nutraceutical, rutin, via protein-polysaccharide complexes. Methods: Zein nano particles smaller than 100 nm were produced using poly ethylene glycol (PEG 400) and Tween 80, which eliminates the use of ethanolic solutions in preparation of zein nanoparticles (ZN). CMC was then added to the ZN under magnetic stirrer to provide zein-CMC complex. A concentration of 20% CMC showed the smallest particle size (<100 nm). Rutin was dispersed in water in oil in water (W/O/W) emulsion stabilized by zein-CMC complex. A set of experiments such as encapsulation efficiency (EE%), encapsulation stability (ES%), and releasing rate of rutin were measured during 30 days of storage at 4°C. Results: Results showed that, produced multiple emulsion prepared with lower concentrations of Tween 80 (0.5%), ethanol: PEG: water ratio of 0:80:20 showed smaller size (89.8±4.2 nm). ES% at pH values of 1.2, 6.8, and 7.4 were 86.63±6.19, 91.54±3.89, and 97.13±2.39 respectively, indicating high pH tolerability of formulated W/O/W emulsions. Conclusion: These findings could pave a new approach in stabilizing W/O/W emulsions for encapsulating and controlling the release of water insoluble nutraceuticals/drugs.

14.
Adv Mater ; 31(37): e1903277, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31348581

RESUMO

Small interfering RNA (siRNA) holds inherent advantages and great potential for treating refractory diseases. However, lack of suitable siRNA delivery systems that demonstrate excellent circulation stability and effective at-site delivery ability is currently impeding siRNA therapeutic performance. Here, a polymeric siRNA nanomedicine (3I-NM@siRNA) stabilized by triple interactions (electrostatic, hydrogen bond, and hydrophobic) is constructed. Incorporating extra hydrogen and hydrophobic interactions significantly improves the physiological stability compared to an siRNA nanomedicine analog that solely relies on the electrostatic interaction for stability. The developed 3I-NM@siRNA nanomedicine demonstrates effective at-site siRNA release resulting from tumoral reactive oxygen species (ROS)-triggered sequential destabilization. Furthermore, the utility of 3I-NM@siRNA for treating glioblastoma (GBM) by functionalizing 3I-NM@siRNA nanomedicine with angiopep-2 peptide is enhanced. The targeted Ang-3I-NM@siRNA exhibits superb blood-brain barrier penetration and potent tumor accumulation. Moreover, by cotargeting polo-like kinase 1 and vascular endothelial growth factor receptor-2, Ang-3I-NM@siRNA shows effective suppression of tumor growth and significantly improved survival time of nude mice bearing orthotopic GBM brain tumors. New siRNA nanomedicines featuring triple-interaction stabilization together with inbuilt self-destruct delivery ability provide a robust and potent platform for targeted GBM siRNA therapy, which may have utility for RNA interference therapy of other tumors or brain diseases.


Assuntos
Terapia Genética , Glioblastoma/terapia , Nanomedicina , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Terapia Combinada , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos
15.
Acta Histochem ; 121(5): 628-637, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31133374

RESUMO

The identification of prognostic markers for colorectal cancer (CRC) has important clinical implications. However, the association between meningioma 1 (MN1) expression and clinical outcomes of CRC has not been fully investigated. The aim of this study was to investigate the expression of MN1 in the clinical context of CRC. We first used immunohistochemistry (IHC) staining to examine and compare MN1 expression between multiple human cancer tissues and normal tissues. Initial screening revealed that the expression of MN1 proteins was significantly higher in tumor tissues of the breast, colon, and liver than in normal tissues. In further testing conducted on 59 paired CRC samples, we observed that the expression of MN1 in CRC tissue samples was significantly higher than in adjacent normal tissues. Moreover, high MN1 expression was not significantly associated with clinicopathological characteristics. Kaplan-Meier survival analysis revealed that high expression of MN1 mRNA or MN1 protein was significantly associated with poor CRC prognosis. Furthermore, univariate Cox analysis revealed that a high MN1 score was significantly associated with prognostic factors. Multivariate Cox analysis further indicated that gender, histologic grade, tumor-node-metastasis (TNM) stage, and a high MN1 score were independent factors of overall CRC survival rates. Finally, MN1 and PCNA protein levels were positively correlated, which suggests that MN1 may be involved in the cell proliferation process during CRC formation. Our results, which confirm those of other studies, indicate that (1) high levels of MN1 expression contribute to poor CRC prognosis and (2) MN1 can serve as a novel potential biomarker in predicting the prognosis of CRC patients.


Assuntos
Neoplasias Colorretais/mortalidade , Proteínas Supressoras de Tumor/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida , Proteínas Supressoras de Tumor/genética
16.
Biomacromolecules ; 20(5): 2148-2158, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30995832

RESUMO

Poly(amidoamine) dendrimer (PAMAM) is well-known for its high efficiency as a drug delivery vehicle. However, the intrinsic cytotoxicity and lack of a detectable signal to facilitate tracking have impeded its practical applications. Herein, we have developed a novel label-free fluorescent and biocompatible PAMAM derivative by simple surface modification of PAMAM using acetaldehyde. The modified PAMAM possessed a strong green fluorescence, which was generated by the C=N bonds of the resulting Schiff Bases via n-π* transition, while the intrinsic cytotoxicity of PAMAM was simultaneously ameliorated. Through further PEGylation, the fluorescent PAMAM demonstrated excellent intracellular tracking in human melanoma SKMEL28 cells. In addition, our PEGylated fluorescent PAMAM derivative achieved enhanced loading and delivery efficiency of the anticancer drug doxorubicin (DOX) compared to the original PAMAM. Importantly, the accelerated kinetics of DOX-encapsulated fluorescent PAMAM nanocomposites in an acidic environment facilitated intracellular drug release, which demonstrated comparable cytotoxicity to that of the free-form doxorubicin hydrochloride (DOX·HCl) against melanoma cells. Overall, our label free fluorescent PAMAM derivative offers a new opportunity of traceable and controlled delivery for DOX and other drugs of potential clinical importance.

17.
Cell Mol Life Sci ; 76(13): 2499-2510, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30919022

RESUMO

Ubiquitin ligases play an integral role in fine-tuning signaling cascades necessary for normal cell function. Aberrant regulation of ubiquitin ligases has been implicated in several neurodegenerative diseases, generally, due to mutations within the E3 ligase itself. Several proteomic-based methods have recently emerged to facilitate the rapid identification of ligase-substrate pairs-a previously challenging feat due to the transient nature of ligase-substrate interactions. These novel methods complement standard immunoprecipitations (IPs) and include proximity-dependent biotin identification (BioID), ubiquitin ligase-substrate trapping, tandem ubiquitin-binding entities (TUBEs), and a molecular trapping unit known as the NEDDylator. The implementation of these techniques is expected to facilitate the rapid identification of novel substrates of E3 ubiquitin ligases, a process that is likely to enhance our understanding of neurodegenerative diseases and highlight novel therapeutic targets for the treatment of neurodegenerative diseases.


Assuntos
Terapia de Alvo Molecular , Doenças Neurodegenerativas/metabolismo , Proteômica/métodos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Especificidade por Substrato , Ubiquitinação
18.
Angew Chem Int Ed Engl ; 58(15): 4938-4942, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737876

RESUMO

Nanoparticles show great potential for drug delivery. However, suitable nanostructures capable of loading a range of drugs together with the co-delivery of siRNAs, which avoid the problem of cation-associated cytotoxicity, are lacking. Herein, we report an small interfering RNA (siRNA)-based vesicle (siRNAsome), which consists of a hydrophilic siRNA shell, a thermal- and intracellular-reduction-sensitive hydrophobic median layer, and an empty aqueous interior that meets this need. The siRNAsome can serve as a versatile nanostructure to load drug agents with divergent chemical properties, therapeutic proteins as well as co-delivering immobilized siRNAs without transfection agents. Importantly, the inherent thermal/reduction-responsiveness enables controlled drug loading and release. When siRNAsomes are loaded with the hydrophilic drug doxorubicin hydrochloride and anti-P-glycoprotein siRNA, synergistic therapeutic activity is achieved in multidrug resistant cancer cells and a tumor model.

19.
Chem Commun (Camb) ; 55(18): 2656-2659, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30742177

RESUMO

Multidrug resistant bacterial infection remains a significant public concern. In this report, photosensitizer Chlorin e6 doped silica was synthesized. This hybrid structure exhibits enhanced photostability and high antibacterial efficiency towards Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA). In summary, this work demonstrates an effective platform to improve the efficiency of antibiotics for better treatment of wound infections.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/química , Porfirinas/química , Dióxido de Silício/química , Antibacterianos/síntese química , Antibacterianos/química , Estabilidade de Medicamentos , Luz , Radiossensibilizantes/química , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Staphylococcus aureus/efeitos dos fármacos
20.
ACS Nano ; 13(1): 357-370, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30485068

RESUMO

Spurred by recent progress in medicinal chemistry, numerous lead compounds have sprung up in the past few years, although the majority are hindered by hydrophobicity, which greatly challenges druggability. In an effort to assess the potential of platinum (Pt) candidates, the nanosizing approach to alter the pharmacology of hydrophobic Pt(IV) prodrugs in discovery and development settings is described. The construction of a self-assembled nanoparticle (NP) platform, composed of amphiphilic lipid-polyethylene glycol (PEG) for effective delivery of Pt(IV) prodrugs capable of resisting thiol-mediated detoxification through a glutathione (GSH)-exhausting effect, offers a promising route to synergistically improving safety and efficacy. After a systematic screening, the optimized NPs (referred to as P6 NPs) exhibited small particle size (99.3 nm), high Pt loading (11.24%), reliable dynamic stability (∼7 days), and rapid redox-triggered release (∼80% in 3 days). Subsequent experiments on cells support the emergence of P6 NPs as a highly effective means of transporting a lethal dose of cargo across cytomembranes through macropinocytosis. Upon reduction by cytoplasmic reductants, particularly GSH, P6 NPs under disintegration released sufficient active Pt(II) metabolites, which covalently bound to target DNA and induced significant apoptosis. The PEGylation endowed P6 NPs with in vivo longevity and tumor specificity, which were essential to successfully inhibiting the growth of cisplatin-sensitive and -resistant xenograft tumors, while effectively alleviating toxic side-effects associated with cisplatin. P6 NPs are, therefore, promising for overcoming the bottleneck in the development of Pt drugs for oncotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Glutationa/metabolismo , Nanopartículas/metabolismo , Pró-Fármacos/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Compostos Organoplatínicos/química , Pinocitose , Polietilenoglicóis/química , Pró-Fármacos/química , Pró-Fármacos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA