Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Exp Mol Med ; 54(3): 309-323, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35338257

RESUMO

Compression-induced apoptosis of nucleus pulposus (NP) cells plays a pivotal role in the pathogenesis of intervertebral disc degeneration (IVDD). Recent studies have shown that the dysregulation of mitochondrial fission and fusion is implicated in the pathogenesis of a variety of diseases. However, its role in and regulatory effects on compression-induced apoptosis of NP cells have not yet been fully elucidated. Heat shock protein 70 (HSP70) is a major cytoprotective heat shock protein, but its physiological role in IVDD, especially its effect on mitochondrial fission and fusion, is still unknown. Herein, we found that compression could induce mitochondrial fission, which ultimately trigger apoptosis of NP cells via the mitochondrial apoptotic pathway. In addition, we identified the cytoprotective effects of HSP70 on NP cells, and we found that promoting the expression of HSP70 could protect NP cells from abnormal mechanical loading in vitro and in vivo. Finally, we showed that HSP70 inhibited compression-induced mitochondrial fission by promoting SIRT3 expression, thereby attenuating mitochondrial dysfunction and the production of reactive oxygen species and ultimately inhibiting the mitochondrial apoptotic pathway in NP cells. In conclusion, our results demonstrated that HSP70 could attenuate compression-induced apoptosis of NP cells by suppressing mitochondrial fission via upregulating SIRT3 expression. Promoting the expression of HSP70 might be a novel strategy for the treatment of IVDD.


Assuntos
Núcleo Pulposo , Sirtuína 3 , Apoptose , Proteínas de Choque Térmico HSP70/genética , Dinâmica Mitocondrial , Núcleo Pulposo/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
2.
Int J Oncol ; 60(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244192

RESUMO

Pyruvate kinase M2 (PKM2) plays an important role in the consumption of glucose and the production of lactic acid, the striking feature of cancer metabolism. The association of PKM2 with osteosarcoma (OS) has been reported but its role in OS has yet to be elucidated. To study this, PKM2­bound RNAs in HeLa cells, a type of cancer cells widely used in the study of molecular function and mechanism, were obtained. Peak calling analysis revealed that PKM2 binds to long noncoding RNAs (lncRNAs), which are associated with cancer pathogenesis and development. Validation of the PKM2­lncRNA interaction in the human OS cell line revealed that lncRNA colon cancer associated transcript­1 (lncCCAT1) interacted with PKM2, which upregulated the phosphorylation of sterol regulatory element­binding protein 2 (SREBP2). These factors promoted the Warburg effect, lipogenesis, and OS cell growth. PKM2 appears to be a key regulator in OS by binding to lncCCAT1. This further extends the biological functions of PKM2 in tumorigenesis and makes it a novel potential therapeutic for OS.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Osteossarcoma/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Osteossarcoma/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Hormônios Tireóideos/genética , Efeito Warburg em Oncologia/efeitos dos fármacos
3.
Genes Dis ; 9(2): 347-357, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35224151

RESUMO

The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy. Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells. Anti-tumor drugs were developed to induce apoptosis, but some patient's show apoptosis escape and chemotherapy resistance. Therefore, other forms of cell death that can overcome the resistance of tumor cells are important in the context of cancer treatment. Ferroptosis is a newly discovered iron-dependent, non-apoptotic type of cell death that is highly negatively correlated with cancer development. Ferroptosis is mainly caused by the abnormal increase in iron-dependent lipid reactive oxygen species and the imbalance of redox homeostasis. This review summarizes the progression and regulatory mechanism of ferroptosis in cancer and discusses its possible clinical applications in cancer diagnosis and treatment.

4.
Nucleic Acids Res ; 50(4): e22, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34850128

RESUMO

MicroRNAs (miRNAs or miRs) are single-stranded, ∼22-nucleotide noncoding RNAs that regulate many cellular processes. While numerous miRNA quantification technologies are available, a recent analysis of 12 commercial platforms revealed high variations in reproducibility, sensitivity, accuracy, specificity and concordance within and/or between platforms. Here, we developed a universal hairpin primer (UHP) system that negates the use of miRNA-specific hairpin primers (MsHPs) for quantitative reverse transcription PCR (RT-qPCR)-based miRNA quantification. Specifically, we analyzed four UHPs that share the same hairpin structure but are anchored with two, three, four and six degenerate nucleotides at 3'-ends (namely UHP2, UHP3, UHP4 and UHP6), and found that the four UHPs yielded robust RT products and quantified miRNAs with high efficiency. UHP-based RT-qPCR miRNA quantification was not affected by long transcripts. By analyzing 14 miRNAs, we demonstrated that UHP4 closely mimicked MsHPs in miRNA quantification. Fine-tuning experiments identified an optimized UHP (OUHP) mix with a molar composition of UHP2:UHP4:UHP6 = 8:1:1, which closely recapitulated MsHPs in miRNA quantification. Using synthetic LET7 isomiRs, we demonstrated that the OUHP-based qPCR system exhibited high specificity and sensitivity. Collectively, our results demonstrate that the OUHP system can serve as a reliable and cost-effective surrogate of MsHPs for RT-qPCR-based miRNA quantification for basic research and precision medicine.


Assuntos
MicroRNAs , Análise Custo-Benefício , Primers do DNA/genética , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Bioact Mater ; 9: 523-540, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820586

RESUMO

Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.

6.
Mol Oncol ; 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34894177

RESUMO

Osteosarcoma (OS) is the most common primary malignancy of bone. Epigenetic regulation plays a pivotal role in cancer development in various aspects, including immune response. In this study, we studied the potential association of alterations in the DNA methylation and transcription of immune-related genes with changes in the tumor microenvironment (TME) and tumor prognosis of OS. We obtained multi-omics data for OS patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. By referring to curated immune signatures and using a consensus clustering method, we categorized patients based on immune-related DNA methylation patterns (IMPs), and evaluated prognosis and TME characteristics of the resulting patient subgroups. Subsequently, we used a machine-learning approach to construct an IMP-associated prognostic risk model incorporating the expression of a six-gene signature (MYC, COL13A1, UHRF2, MT1A, ACTB, and GBP1), which was then validated in an independent patient cohort. Furthermore, we evaluated TME patterns, transcriptional variation in biological pathways, somatic copy number alteration, anticancer drug sensitivity, and potential responsiveness to immune checkpoint inhibitor therapy with regard to our IMP-associated signature scoring model. By integrative IMP and transcriptomic analysis, we uncovered distinct prognosis and TME patterns in OS. Finally, we constructed a classifying model, which may aid in prognosis prediction and provide a potential rationale for targeted- and immune checkpoint inhibitor therapy in OS.

7.
Front Immunol ; 12: 732006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745101

RESUMO

Background: The International Prognostic Index (IPI) is widely used to discriminate the prognosis of patients with diffuse large B-cell lymphoma (DLBCL). However, there is a significant need to identify novel valuable biomarkers in the context of targeted therapy, such as immune checkpoint blockade (ICB). Methods: Gene expression data and clinical DLBCL information were obtained from The Cancer Genome Atlas and Gene Expression Omnibus datasets. A total of 371 immune-related genes in DLBCL patients associated with different IPI risk groups were identified by weighted gene co-expression network analysis, and eight genes were selected to construct an IPI-based immune prognostic model (IPI-IPM). Subsequently, we analyzed the somatic mutation and transcription profiles of the IPI-IPM subgroups as well as the potential clinical response to immune checkpoint blockade (ICB) in IPI-IPM subgroups. Results: The IPI-IPM was constructed based on the expression of CMBL, TLCD3B, SYNDIG1, ESM1, EPHA3, HUNK, PTX3, and IL12A, where high-risk patients had worse overall survival than low-risk patients, consistent with the results in the independent validation cohorts. The comprehensive results showed that high IPI-IPM risk scores were correlated with immune-related signaling pathways, high KMT2D and CD79B mutation rates, and upregulation of inhibitory immune checkpoints, including PD-L1, BTLA, and SIGLEC7, indicating a greater potential response to ICB therapy. Conclusion: The IPI-IPM has independent prognostic significance for DLBCL patients, which provides an immunological perspective to elucidate the mechanisms of tumor progression and sheds light on the development of immunotherapy for DLBCL.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Linfoma Difuso de Grandes Células B/imunologia , Nomogramas , Transcriptoma , Microambiente Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Genéticas , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Resultado do Tratamento , Microambiente Tumoral/genética , Adulto Jovem
8.
Genes Dis ; 8(6): 814-826, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34522710

RESUMO

Intestinal cancers are developed from intestinal epithelial stem cells (ISCs) in intestinal crypts through a multi-step process involved in genetic mutations of oncogenes and tumor suppressor genes. ISCs play a key role in maintaining the homeostasis of gut epithelium. In 2009, Sato et al established a three-dimensional culture system, which mimicked the niche microenvironment by employing the niche factors, and successfully grew crypt ISCs into organoids or Mini-guts in vitro. Since then, the intestinal organoid technology has been used to delineate cellular signaling in ISC biology. However, the cultured organoids consist of heterogeneous cell populations, and it was technically challenging to introduce genomic changes into three-dimensional organoids. Thus, there was a technical necessity to develop a two-dimensional ISC culture system for effective genomic manipulations. In this study, we established a conditionally immortalized mouse intestinal crypt (ciMIC) cell line by using a piggyBac transposon-based SV40 T antigen expression system. We showed that the ciMICs maintained long-term proliferative activity under two-dimensional niche factor-containing culture condition, retained the biological characteristics of intestinal epithelial stem cells, and could form intestinal organoids in three-dimensional culture. While in vivo cell implantation tests indicated that the ciMICs were non-tumorigenic, the ciMICs overexpressing oncogenic ß-catenin and/or KRAS exhibited high proliferative activity and developed intestinal adenoma-like pathological features in vivo. Collectively, these findings strongly suggested that the engineered ciMICs should be used as a valuable tool cell line to dissect the genetic and/or epigenetic underpinnings of intestinal tumorigenesis.

9.
Genes Dis ; 8(6): 918-930, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34522718

RESUMO

As multipotent progenitor cells, mesenchymal stem cells (MSCs) can renew themselves and give rise to multiple lineages including osteoblastic, chondrogenic and adipogenic lineages. It's previously shown that BMP9 is the most potent BMP and induces osteogenic and adipogenic differentiation of MSCs. However, the molecular mechanism through which BMP9 regulates MSC differentiation remains poorly understood. Emerging evidence indicates that noncoding RNAs, especially microRNAs, may play important roles in regulating MSC differentiation and bone formation. As highly conserved RNA binding proteins, Argonaute (AGO) proteins are essential components of the multi-protein RNA-induced silencing complexes (RISCs), which are critical for small RNA biogenesis. Here, we investigate possible roles of AGO proteins in BMP9-induced lineage-specific differentiation of MSCs. We first found that BMP9 up-regulated the expression of Ago1, Ago2 and Ago3 in MSCs. By engineering multiplex siRNA vectors that express multiple siRNAs targeting individual Ago genes or all four Ago genes, we found that silencing individual Ago expression led to a decrease in BMP9-induced early osteogenic marker alkaline phosphatase (ALP) activity in MSCs. Furthermore, we demonstrated that simultaneously silencing all four Ago genes significantly diminished BMP9-induced osteogenic and adipogenic differentiation of MSCs and matrix mineralization, and ectopic bone formation. Collectively, our findings strongly indicate that AGO proteins and associated small RNA biogenesis pathway play an essential role in mediating BMP9-induced osteogenic differentiation of MSCs.

10.
Front Cell Dev Biol ; 9: 652300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277600

RESUMO

Due to the rarity and heterogeneity, it is challenging to explore and develop new therapeutic targets for patients with sarcoma. Recently, immune cell infiltration in the tumor microenvironment (TME) was widely studied, which provided a novel potential approach for cancer treatment. The competing endogenous RNA (ceRNA) regulatory network has been reported as a critical molecular mechanism of tumor development. However, the role of the ceRNA regulatory network in the TME of sarcoma remains unclear. In this study, gene expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) sarcoma datasets, and an immune infiltration-related ceRNA network was constructed, which comprised 14 lncRNAs, 13 miRNAs, and 23 mRNAs. Afterward, we constructed an immune infiltration-related risk score model based on the expression of IRF1, MFNG, hsa-miR-940, and hsa-miR-378a-5p, presenting a promising performance in predicting the prognosis of patients with sarcoma.

11.
Aging (Albany NY) ; 13(13): 17407-17427, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232919

RESUMO

Ovarian cancer is the third most common cancer and the second most common cause of gynecologic cancer death in women. Its routine clinical management includes surgical resection and systemic therapy with chemotherapeutics. While the first-line systemic therapy requires the combined use of platinum-based agents and paclitaxel, many ovarian cancer patients have recurrence and eventually succumb to chemoresistance. Thus, it is imperative to develop new strategies to overcome recurrence and chemoresistance of ovarian cancer. Repurposing previously-approved drugs is a cost-effective strategy for cancer drug discovery. The antiparasitic drug mebendazole (MBZ) is one of the most promising drugs with repurposing potential. Here, we investigate whether MBZ can overcome cisplatin resistance and sensitize chemoresistant ovarian cancer cells to cisplatin. We first established and characterized two stable and robust cisplatin-resistant (CR) human ovarian cancer lines and demonstrated that MBZ markedly inhibited cell proliferation, suppressed cell wounding healing/migration, and induced apoptosis in both parental and CR cells at low micromole range. Mechanistically, MBZ was revealed to inhibit multiple cancer-related signal pathways including ELK/SRF, NFKB, MYC/MAX, and E2F/DP1 in cisplatin-resistant ovarian cancer cells. We further showed that MBZ synergized with cisplatin to suppress cell proliferation, induce cell apoptosis, and blunt tumor growth in xenograft tumor model of human cisplatin-resistant ovarian cancer cells. Collectively, our findings suggest that MBZ may be repurposed as a synergistic sensitizer of cisplatin in treating chemoresistant human ovarian cancer, which warrants further clinical studies.


Assuntos
Antinematódeos/farmacologia , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mebendazol/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Cisplatino/uso terapêutico , Reposicionamento de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaio Tumoral de Célula-Tronco , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Am J Transl Res ; 13(5): 4233-4250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150011

RESUMO

Mesenchymal stem cells (MSCs) are capable of differentiating into bone, cartilage and adipose tissues. We identified BMP9 as the most potent osteoinductive BMP although detailed mechanism underlying BMP9-regulated osteogenesis of MSCs is indeterminate. Emerging evidence indicates that autophagy plays a critical role in regulating bone homeostasis. We investigated the possible role of autophagy in osteogenic differentiation induced by BMP9. We showed that BMP9 upregulated the expression of multiple autophagy-related genes in MSCs. Autophagy inhibitor chloroquine (CQ) inhibited the osteogenic activity induced by BMP9 in MSCs. While overexpression of ATG5 or ATG7 did not enhance osteogenic activity induced by BMP9, silencing Atg5 expression in MSCs effectively diminished BMP9 osteogenic signaling activity and blocked the expression of the osteogenic regulator Runx2 and the late marker osteopontin induced by BMP9. Stem cell implantation study revealed that silencing Atg5 in MSCs profoundly inhibited ectopic bone regeneration and bone matrix mineralization induced by BMP9. Collectively, our results strongly suggest a functional autophagy pathway may play an essential role in regulating osteogenic differentiation induced by BMP9 in MSCs. Thus, restoration of dysregulated autophagic activity in MSCs may be exploited to treat fracture healing, bone defects or osteoporosis.

13.
Genes Dis ; 8(3): 298-306, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997177

RESUMO

Plasmid DNA (pDNA) isolation from bacterial cells is one of the most common and critical steps in molecular cloning and biomedical research. Almost all pDNA purification involves disruption of bacteria, removal of membrane lipids, proteins and genomic DNA, purification of pDNA from bulk lysate, and concentration of pDNA for downstream applications. While many liquid-phase and solid-phase pDNA purification methods are used, the final pDNA preparations are usually contaminated with varied degrees of host RNA, which cannot be completely digested by RNase A. To develop a simple, cost-effective, and yet effective method for RNA depletion, we investigated whether commercially available size selection magnetic beads (SSMBs), such as Mag-Bind® TotalPure NGS Kit (or Mag-Bind), can completely deplete bacterial RNA in pDNA preparations. In this proof-of-principle study, we demonstrated that, compared with RNase A digestion and two commercial plasmid affinity purification kits, the SSMB method was highly efficient in depleting contaminating RNA from pDNA minipreps. Gene transfection and bacterial colony formation assays revealed that pDNA purified from SSMB method had superior quality and integrity to pDNA samples cleaned up by RNase A digestion and/or commercial plasmid purification kits. We further demonstrated that the SSMB method completely depleted contaminating RNA in large-scale pDNA samples. Furthermore, the Mag-bind-based SSMB method costs only 5-10% of most commercial plasmid purification kits on a per sample basis. Thus, the reported SSMB method can be a valuable and inexpensive tool for the removal of bacterial RNA for routine pDNA preparations.

14.
Front Bioeng Biotechnol ; 9: 603444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842441

RESUMO

Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.

15.
J Cell Mol Med ; 25(6): 2750-2763, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33550701

RESUMO

c-Jun activation domain-binding protein-1 (Jab1) is aberrantly overexpressed in multiple cancers and plays an oncogenic role in cancer progression. We examined the association between Jab1 expression and prognosis in patients with cancer by conducting a meta-analysis. A comprehensive search strategy was performed using the PubMed, Web of Science, Ovid and EMBASE in July 2020. Eligible studies were enrolled according to definite criteria. Twenty-seven studies involving 2609 patients were enrolled in this meta-analysis. A significant association between high Jab1 expression and poor overall survival (pooled hazard ratio [HR] 2.344, 95% confidence interval [CI]: 2.037-2.696) was observed. Subgroup analyses of the type of cancer, sample size, follow-up period, Jab1 detection method and preoperative treatment did not alter the significance. On pooling data from Cox multivariate analyses, high Jab1 expression was found to be an independent prognostic indicator for overall survival. In addition, high Jab1 expression was found to be associated with advanced clinicopathological features such as clinical stage, lymphatic metastasis, histological grade and distant metastasis in cancers. Our meta-analysis is the first to demonstrate that high Jab1 expression may be a promising indicator of poor prognosis and has an independent prognostic value for overall survival in patients with cancer.


Assuntos
Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Suscetibilidade a Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Modelos de Riscos Proporcionais , Viés de Publicação
16.
Genes Dis ; 8(1): 8-24, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569510

RESUMO

Notch is a cell-cell signaling pathway that is involved in a host of activities including development, oncogenesis, skeletal homeostasis, and much more. More specifically, recent research has demonstrated the importance of Notch signaling in osteogenic differentiation, bone healing, and in the development of the skeleton. The craniofacial skeleton is complex and understanding its development has remained an important focus in biology. In this review we briefly summarize what recent research has revealed about Notch signaling and the current understanding of how the skeleton, skull, and face develop. We then discuss the crucial role that Notch plays in both craniofacial development and the skeletal system, and what importance it may play in the future.

17.
Cell Death Dis ; 12(1): 59, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431838

RESUMO

Small nucleolar RNA host gene 6 (SNHG6) is a newly discovered long non-coding RNA (lncRNA), while the regulatory mechanism of SNHG6 in chondrosarcoma is largely unknown. Here we found that SNHG6 expression was upregulated and showed positive correlation with the progression of chondrosarcoma. Functional assays demonstrated that SNHG6 was required for the proliferation, migration, and invasion of chondrosarcoma cells. Mechanistic study revealed that SNHG6 could recruit EZH2 and maintain high level of H3K27me3 to repress the transcription of tumor-suppressor genes, including KLF6. KLF6 was found to bind to the promoter region of SP1 and restrained its transcription, while SP1 could be recruited to the promoter region of SNHG6 and promoted its transcription to form a positive loop. In summary, this study reveals that SP1-induced SNHG6 forms a positive loop to facilitate the carcinogenesis of chondrosarcoma through the suppression of KLF6 by recruiting EZH2, which manifests the oncogenic function of SNHG6 in chondrosarcoma.


Assuntos
Neoplasias Ósseas/metabolismo , Condrossarcoma/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fator 6 Semelhante a Kruppel/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Condrossarcoma/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Fator 6 Semelhante a Kruppel/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Longo não Codificante/genética , Fator de Transcrição Sp1/genética , Transfecção
18.
Front Oncol ; 11: 764938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059310

RESUMO

BACKGROUND: Sacroiliac joint tumor is rare, and the reconstruction after tumor resection is difficult. We aimed to analyze and compare the clinical effects of three-dimensional (3D) printed prostheses and bone cement combined with screws for bone defect reconstruction after sacroiliac joint tumor resection. METHODS: Twelve patients with sacroiliac joint tumors who underwent tumor resection and received 3D-printed prostheses to reconstruct bone defects in our hospital from January 2014 to December 2020 were included in the study group Twelve matched patients who underwent sacroiliac joint tumor resection and reconstruction with bone cement and screws in the same time period were selected as the control group. RESULTS: In the 3D-printing group, six cases were extensively excised, and six cases were marginally excised. All patients were followed up for 6-90 months, and the median follow-up time was 21 months. Among them, nine patients had disease-free survival, two survived with tumor recurrence, and one died due to tumor metastasis. The MSTS-93 score of the surviving patients was 24.1 ± 2.8. The operation time was 120.30 ± 14.50 min, and the intraoperative bleeding was 625.50 ± 30.00 ml. In the control group, seven cases were extensively excised, and five cases were marginally excised. All patients were followed up for 6-90 months, with a median follow-up time of 20 months. Among them, nine patients had disease-free survival, one survived with tumor recurrence, and two died due to tumor metastasis. The MSTS-93 score of the patients was 18.9 ± 2.6. The operation time was 165.25 ± 15.00 min, and the intraoperative bleeding was 635.45 ± 32.00 ml. There was no significant difference in survival status, intraoperative blood loss, or complications between the two groups (P>0.05). However, there were statistically significant differences in operative time and postoperative MSTS-93 scores between the two groups (P<0.05). CONCLUSIONS: After resection of the sacroiliac joint tumor, reconstruction using 3D printed prostheses was shorter and resulted in better movement function.

19.
Am J Transl Res ; 13(12): 13683-13696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035707

RESUMO

OBJECTIVES: Acute myeloid leukemia (AML) is caused by multiple genetic alterations in hematopoietic progenitors, and molecular genetic analyses have provided useful information for AML diagnosis and prognostication. This study aimed to integratively understand the prognostic value of specific copy number variation (CNV) patterns and CNV-modulated gene expression in AML. METHODS: We conducted integrative CNV profiling and gene expression analysis using data from the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) and The Cancer Genome Atlas (TCGA) AML cohorts. CNV-related genes associated with survival were identified using the TARGET AML cohort and validated using the TCGA AML cohort. Genes whose CNV-modulated expression was associated with survival were also identified using the TARGET AML cohort and validated using the TCGA AML cohort, and patient bone marrow samples were then used to further validate the effects of CNV-modulated gene expression on survival. CNV and mRNA survival analyses were conducted using proportional hazards regression models (Cox regression) and the "survminer" and "survival" packages of the R Project for Statistical Computing. Genes belonging to the Kyoto Encyclopedia of Genes and Genomes (KEGG) cancer panel were extracted from KEGG cancer-related pathways. RESULTS: One hundred two CNV-related genes (located at 7q31-34, 16q24) associated with patient survival were identified using the TARGET cohort and validated with the TCGA AML cohort. Among these 102 validated genes, three miRNA genes (MIR29A, MIR183, and MIR335) were included in the KEGG cancer panel. Five genes (SEMA4D, CBFB, CHAF1B, SAE1, and DNMT1) whose expression was modulated by CNVs and significantly associated with clinical outcomes were identified, and the deletion of SEMA4D and CBFB was found to potentially exert protective effects against AML. The results of these five genes were also validated using patient marrow samples. Additionally, the distribution of CNVs affecting these five CNV-modulated genes was independent of the risk group (favorable-, intermediate-, and adverse-risk groups). CONCLUSIONS: Overall, this study identified 102 CNV-related genes associated with patient survival and identified five genes whose expression was modulated by CNVs and associated with patient survival. Our findings are crucial for the development of new modes of prognosis evaluation and targeted therapy for AML.

20.
Mol Ther Oncolytics ; 23: 602-611, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34977337

RESUMO

Adenovirus (Ad) is a non-enveloped linear double-stranded DNA virus with >50 serotypes in humans. Ad vectors have been used as gene delivery vehicles to express transgenes, small interfering RNAs (siRNAs) for gene silencing, or CRISPR/Cas and designer nucleases for genome editing. Although several methods are used to generate Ad vectors, the Ad-making process remains technically challenging and time consuming. Moreover, the Ad-making techniques have not been improved for the past two decades. Gibson DNA Assembly (GDA) technology allows one-step isothermal DNA assembly of multiple overlapping fragments. Here, we developed a one-step construction of Ad (OSCA) system using GDA technology. Specifically, we first engineered several adenoviral recipient vectors that contain the ccdB suicide gene flanked with two 20-bp unique sequences, which serve as universal sites for GDA reactions in the Ad genome ΔE1 region. In two proof-of-principle experiments, we demonstrated that the GDA reactions were highly efficient and that the resulting Ad plasmids could be effectively packaged into Ads. Ad-mediated expression of mouse BMP9 in mesenchymal stem cells was shown to effectively induce osteogenic differentiation both in vitro and in vivo. Collectively, our results demonstrate that the OSCA system drastically streamlines the Ad-making process and should facilitate Ad-based applications in basic, translational, and clinical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...