Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Cell Death Dis ; 10(10): 774, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601780


Neonatal jaundice is prevalent among newborns and can lead to severe neurological deficits, particularly sensorimotor dysfunction. Previous studies have shown that bilirubin (BIL) enhances the intrinsic excitability of central neurons and this can potentially contribute to their overexcitation, Ca2+ overload, and neurotoxicity. However, the cellular mechanisms underlying elevated neuronal excitability remain unknown. By performing patch-clamp recordings from neonatal neurons in the rat medial vestibular nucleus (MVN), a crucial relay station for locomotor and balance control, we found that BIL (3 µM) drastically increases the spontaneous firing rates by upregulating the current-mediated voltage-gated sodium channels (VGSCs), while shifting their voltage-dependent activation toward more hyperpolarized potentials. Immunofluorescence labeling and western immunoblotting with an anti-NaV1.1 antibody, revealed that BIL elevates the expression of VGSCs by promoting their recruitment to the membrane. Furthermore, we found that this VGSC-trafficking process is Ca2+ dependent because preloading MVN neurons with the Ca2+ buffer BAPTA-AM, or exocytosis inhibitor TAT-NSF700, prevents the effects of BIL, indicating the upregulated activity and density of functional VGSCs as the core mechanism accountable for the BIL-induced overexcitation of neonatal neurons. Most importantly, rectification of such overexcitation with a low dose of VGSC blocker lidocaine significantly attenuates BIL-induced cell death. We suggest that this enhancement of VGSC currents directly contributes to the vulnerability of neonatal brain to hyperbilirubinemia, implicating the activity and trafficking of NaV1.1 channels as a potential target for neuroprotection in cases of severe jaundice.

Sci Rep ; 7(1): 431, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28348377


Neonatal brain is particularly vulnerable to pathological levels of bilirubin which elevates and overloads intracellular Ca2+, leading to neurotoxicity. However, how voltage-gated calcium channels (VGCCs) are functionally involved in excess calcium influx remains unknown. By performing voltage-clamp recordings from bushy cells in the ventral cochlear nucleus (VCN) in postnatal rat pups (P4-17), we found the total calcium current density was more than doubled over P4-17, but the relative weight of VGCC subtypes changed dramatically, being relatively equal among T, L, N, P/Q and R-type at P4-6 to predominantly L, N, R over T and P/Q at P15-17. Surprisingly, acute administration of bilirubin augmented the VGCC currents specifically mediated by high voltage-activated (HVA) P/Q-type calcium currents. This augment was attenuated by intracellular loading of Ca2+ buffer EGTA or calmodulin inhibitory peptide. Our findings indicate that acute exposure to bilirubin increases VGCC currents, primarily by targeting P/Q-type calcium channels via Ca2+ and calmodulin dependent mechanisms to overwhelm neurons with excessive Ca2+. Since P/Q-subtype calcium channels are more prominent in neonatal neurons (e.g. P4-6) than later stages, we suggest this subtype-specific enhancement of P/Q-type Ca2+ currents likely contributes to the early neuronal vulnerability to hyperbilirubinemia in auditory and other brain regions.

Bilirrubina/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Patch-Clamp , Ratos
Stem Cells Transl Med ; 5(5): 561-71, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27013738


UNLABELLED: The genetic correction of induced pluripotent stem cells (iPSCs) induced from somatic cells of patients with sensorineural hearing loss (caused by hereditary factors) is a promising method for its treatment. The correction of gene mutations in iPSCs could restore the normal function of cells and provide a rich source of cells for transplantation. In the present study, iPSCs were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T; P-iPSCs), the asymptomatic father of the patient (MYO7A c.1184G>A mutation; CF-iPSCs), and a normal donor (MYO7A(WT/WT); C-iPSCs). One of MYO7A mutation sites (c.4118C>T) in the P-iPSCs was corrected using CRISPR/Cas9. The corrected iPSCs (CP-iPSCs) retained cell pluripotency and normal karyotypes. Hair cell-like cells induced from CP-iPSCs showed restored organization of stereocilia-like protrusions; moreover, the electrophysiological function of these cells was similar to that of cells induced from C-iPSCs and CF-iPSCs. These results might facilitate the development of iPSC-based gene therapy for genetic disorders. SIGNIFICANCE: Induced pluripotent stem cells (iPSCs) were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T). One of the MYO7A mutation sites (c.4118C>T) in the iPSCs was corrected using CRISPR/Cas9. The genetic correction of MYO7A mutation resulted in morphologic and functional recovery of hair cell-like cells derived from iPSCs. These findings confirm the hypothesis that MYO7A plays an important role in the assembly of stereocilia into stereociliary bundles. Thus, the present study might provide further insight into the pathogenesis of sensorineural hearing loss and facilitate the development of therapeutic strategies against monogenic disease through the genetic repair of patient-specific iPSCs.

Sistemas CRISPR-Cas , Forma Celular , Células Ciliadas Auditivas , Perda Auditiva Neurossensorial/genética , Células-Tronco Pluripotentes Induzidas , Mutação , Miosinas/genética , Reparo Gênico Alvo-Dirigido/métodos , Diferenciação Celular , Linhagem Celular , Análise Mutacional de DNA , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/transplante , Células Ciliadas Auditivas/ultraestrutura , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/cirurgia , Hereditariedade , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Masculino , Potenciais da Membrana , Linhagem , Fenótipo , Recuperação de Função Fisiológica , Transfecção