Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(29): 8099-8106, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34264668

RESUMO

In a microwave field, the dielectric properties, molecular structures, and hydrogen bonding dynamics of glycerol in its mixtures with water were determined by the molecular dynamics simulation method. The dipole-dipole correlation of glycerol is linked to the field intensity of microwaves. The results show that as the field intensity is increased, even glycerol in the second coordination shell can become correlated with each other. The structures of up to 35 glycerol molecules are observed. More than that, it was observed that lifetimes of glycerol-glycerol hydrogen bonds were prolonged, while the average hydrogen bond number was also increased. Besides, the structures in a strong microwave field mimic the weak C-H⋯O hydrogen bonds seen in high-glycerol concentration mixtures, yet the concentration is lower. These results indicate that with the assistance of the microwave field, glycerol molecules become concentrated and are more likely to establish stable interactions with others. As a consequence, the spherical clusters composed by glycerol molecules in our nanosheet synthesis experiment are easier to form.


Assuntos
Glicerol , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Micro-Ondas , Água
2.
Sci Rep ; 10(1): 1642, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015360

RESUMO

It will get entirely unusual derivatives with gratifying chemical bonding schemes for boron clusters by doping with lithium, the lightest alkalis. The geometric structures and electronic properties of the LiBn0/- (n = 10-20) clusters have been studied through Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) structural search approach along with the density functional theory (DFT) calculations. The low-lying candidates of LiBn0/- (n = 10-20) are reoptimized at the B3LYP functional in conjunction with 6-311 + G(d) basis set. Three forms of geometric configurations are identified for the ground-state structures of LiBn0/- clusters: half-sandwich-type, quasi-planar and drum-type structures. The photoelectron spectra (PES) of the LiBn- clusters have been calculated through time-dependent density functional theory (TD-DFT). A promising LiB13 with tetrahedral-typed B13 ligand half-surround cluster and robust stability is uncovered. The molecular orbital and adaptive natural density partitioning (AdNDP) analysis show that B-B bonds in the B13 moiety combined with the interaction between the B13 shell and Li atom stabilize the C2v LiB13 cluster. Our results advance the fundamental understanding about the alkali metal doped boron clusters.

3.
Sci Rep ; 9(1): 14367, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591442

RESUMO

Beryllium-doped boron clusters display essential similarities to borophene (boron sheet) with a molecular structure characterized by remarkable properties, such as anisotropy, metallicity and high conductivity. Here we have determined low-energy structures of BeBn0/- (n = 10-20) clusters by utilizing CALYPSO searching program and DFT optimization. The results indicated that most ground states of clusters prefer plane or quasi-plane structures by doped Be atom. A novel unexpected fascinating planar BeB16- cluster with C2v symmetry is uncovered which possesses robust relative stability. Furthermore, planar BeB16- offers a possibility to construct metallo-borophene nano-materials. Molecular orbital and chemical bonding analysis reveal the peculiarities of BeB16- cluster brings forth the aromaticity and the strong interaction of B-B σ-bonds in boron network.

4.
Phys Chem Chem Phys ; 20(48): 30376-30383, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30489588

RESUMO

Modification of properties of boron nanoparticles by doping with transition metals presents a challenging problem because the number of isomers of both doped and un-doped nanoparticles rapidly increases with the nanoparticle size. Here, we perform a study of neutral and anionic Ru-doped boron clusters RuBn (n = 9-20) using the unbiased CALYPSO structural search method in combination with density functional theory calculations. Our results show that the neutral RuB9 cluster possesses a perfect planar wheel-like geometrical structure, whereas the RuBn clusters prefer structures of the half-sandwich type in the range of 10 ≤ n ≤ 14, drum-like type in the range of 15 ≤ n ≤ 18 and cage-like structures for larger n values. The geometrical structures of the lowest total energy states of the RuBn- anions are similar to those of the corresponding neutrals, except for RuB10-, RuB11-, RuB14-, RuB15- and RuB20-. The neutral RuB12 and RuB14 clusters are found to exhibit enhanced stability with respect to the rest of the RuBn clusters due to the delocalized bonding between the Ru atom and the boron host.

5.
Opt Lett ; 41(13): 2962-5, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367076

RESUMO

We report on a versatile optical frequency-modulated continuous-wave interferometry technique that exploits wideband phase locking for generating highly coherent linear laser frequency chirps. This technique is based on an ultra-short delay-unbalanced interferometer, which leads to a large bandwidth, short lock time, and robust operation even in the absence of any isolation from environmental perturbations. In combination with a digital delay-matched phase error compensation, this permits the achievement of a range window about 60 times larger than the intrinsic laser coherence length with a 1.25 mm Fourier transform-limited spatial resolution. The demonstrated configuration can be easily applied to virtually any semiconductor laser.

6.
Opt Express ; 23(14): 18070-9, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191866

RESUMO

We present a photonic approach for generating low phase noise, arbitrary chirped microwave waveforms based on heterodyne beating between high order correlated comb lines extracted from frequency-agile optical frequency comb. Using the dual heterodyne phase transfer scheme, extrinsic phase noises induced by the separate optical paths are efficiently suppressed by 42-dB at 1-Hz offset frequency. Linearly chirped microwave waveforms are achieved within 30-ms temporal duration, contributing to a large time-bandwidth product. The linearity measurement leads to less than 90 kHz RMS frequency error during the entire chirp duration, exhibiting excellent linearity for the microwave and sub-THz waveforms. The capability of generating arbitrary waveforms up to sub-THz band with flexible temporal duration, long repetition period, broad bandwidth, and large time-bandwidth product is investigated and discussed.

7.
PLoS One ; 10(5): e0124443, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942588

RESUMO

Natural grassland productivity, which is based on an individual plant's aboveground biomass (AB) and its interaction with herbivores, can obviously affect terrestrial ecosystem services and the grassland's agricultural production. As plant traits have been linked to both AB and ecosystem success, they may provide a useful approach to understand the changes in individual plants and grassland productivity in response to grazing on a generic level. Unfortunately, the current lack of studies on how plant traits affect AB affected by herbivores leaves a major gap in our understanding of the mechanism of grassland productivity decline. This study, therefore, aims to analyze the paths of overgrazing-induced decline in the individual AB of Leymus chinensis (the dominant species of meadow-steppe grassland in northern China) on a plant functional trait scale. Using a paired-sampling approach, we compared the differences in the functional traits of L. chinensis in long-term grazing-excluded and experimental grazing grassland plots over a continuous period of approximately 20 years (located in meadow steppe lands in Hailar, Inner Mongolia, China). We found a highly significant decline in the individual height and biomass (leaf, stem, and the whole plant) of L. chinensis as a result of overgrazing. Biomass allocation and leaf mass per unit area were significantly affected by the variation in individual size. Grazing clearly enhanced the sensitivity of the leaf-to-stem biomass ratio in response to variation in individual size. Moreover, using a method of standardized major axis estimation, we found that the biomass in the leaves, stems, and the plant as a whole had highly significant allometric scaling with various functional traits. Also, the slopes of the allometric equations of these relationships were significantly altered by grazing. Therefore, a clear implication of this is that grazing promotes an asymmetrical response of different plant functional traits to variation in individual plant size, which influences biomass indirectly. Furthermore, we detected paths of individual AB decline in L. chinensis induced by grazing by fitting to a structural equation model. These results indicate that grazing causes AB decline primarily through a 'bottom-up' effect on plant height and stem traits. However, leaf traits, via the process of allometric scaling, affect plant AB indirectly.


Assuntos
Poaceae/fisiologia , Animais , Biomassa , Ecossistema , Herbivoria
8.
Opt Lett ; 39(10): 2849-52, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978219

RESUMO

We demonstrate a phase-stabilized remote distribution of 100.04 GHz millimeter wave signal over 60 km optical fiber. The phase error of the remote millimeter wave signal induced by fiber transmission delay variations is detected by dual-heterodyne phase error transfer and corrected with a feedback system based on a fast response acousto-optic frequency shifter. The phase noise within the bandwidth of 300 Hz is effectively suppressed; thus, the fast transmission delay variations can be compensated. The residual phase noise of the remote 100.04 GHz signal reaches -56 dBc/Hz at 1 Hz frequency offset from the carrier, and long-term stability of 1.6×10(-16) at 1000 s averaging time is achieved. The fast phase-noise-correcting capability is evaluated by vibrating part of the transmission fiber link.

9.
Opt Lett ; 39(6): 1493-6, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690821

RESUMO

Optical generation of highly stable millimeter and terahertz waves is proposed and experimentally demonstrated. The optical-fiber-path-induced phase fluctuation is identically transferred to a 40 MHz intermediate frequency by using dual-heterodyne phase error transfer, then canceled by a phase-locked loop. Based on the scheme, highly stable signals within the frequency range from 25 GHz to 1 THz are generated, and the phase jitter is decreased from 2.05 rad to 4.7 mrad in the frequency range from 0.01 Hz to 1 MHz. For 1 THz, the residual phase noise reaches -60 dBc/Hz at 1 Hz frequency offset from the carrier, and the relative timing jitter is reduced to 0.7 fs.

10.
Opt Lett ; 39(4): 888-91, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562233

RESUMO

We have developed a radio-frequency local oscillator remote distribution system, which transfers a phase-stabilized 10.03 GHz signal over 100 km optical fiber. The phase noise of the remote signal caused by temperature and mechanical stress variations on the fiber is compensated by a high-precision phase-correction system, which is achieved using a single sideband modulator to transfer the phase correction from intermediate frequency to radio frequency, thus enabling accurate phase control of the 10 GHz signal. The residual phase noise of the remote 10.03 GHz signal is measured to be -70 dBc/Hz at 1 Hz offset, and long-term stability of less than 1×10⁻¹6 at 10,000 s averaging time is achieved. Phase error is less than ±0.03π.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...