Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Toxicol ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637163

RESUMO

Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer with a high incidence and mortality. Circular RNAs (circRNAs) exert vital functions in various cancers by acting as a sponge of miRNAs to abolish their inhibitory effect on target genes. This study aims to explore the biological function of circRNA NEDD4 binding protein 2 like 2 (circ-N4BP2L2) in NSCLC. We found that circ-N4BP2L2 was upregulated in NSCLC tissues and cells by using RT-qPCR. A549 cells were transfected with pcDNA-circN4BP2L2 or sh-circN4BP2L2 to obtain circN4BP2L2-overexpressed or -silenced cells, and then cell proliferation, invasion and apoptosis were determined. The results showed that knockdown of circ-N4BP2L2 repressed cell proliferation, invasion as well as mitochondrial function, and promoted cell apoptosis; while overexpression of circ-N4BP2L2 resulted in the opposite results. Mechanistically, the targeting correlations between miR-135a-5p and circ-N4BP2L2 or ADP-ribosylation factorlike 5B (ARL5B) were confirmed by using dual luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. In addition, we found that circ-N4BP2L2 could promote the expression of ARL5B by serving as a sponge of miR-135a-5p. Moreover, rescue assays revealed that silencing miR-135a-5p or overexpressing ARL5B was able to abate the effects of circ-N4BP2L2 knockdown on malignant phenotypes and mitochondrial function of A549 cells. Finally, tumorigenicity assay demonstrated that circ-N4BP2L2 facilitated NSCLC tumor growth in vivo. Taken together, circ-N4BP2L2 enhanced NSCLC progression via the miR-135a-5p/ARL5B axis, which may provide a novel therapeutic target of NSCLC.

2.
Front Cell Infect Microbiol ; 12: 1042945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439227

RESUMO

Although the fast-growing metagenomic next-generation sequencing (mNGS) has been used in diagnosing infectious diseases, low detection rate of mNGS in detecting pathogens with low loads limits its extensive application. In this study, 130 patients with suspected pulmonary infections were enrolled, from whom bronchoalveolar lavage fluid (BALF) samples were collected. The conventional tests and mNGS of cell-free DNA (cfDNA) and whole-cell DNA (wcDNA) using BALF were simultaneously performed. mNGS of cfDNA showed higher detection rate (91.5%) and total coincidence rate (73.8%) than mNGS of wcDNA (83.1% and 63.9%) and conventional methods (26.9% and 30.8%). A total of 70 microbes were detected by mNGS of cfDNA, and most of them (60) were also identified by mNGS of wcDNA. The 31.8% (21/66) of fungi, 38.6% (27/70) of viruses, and 26.7% (8/30) of intracellular microbes can be only detected by mNGS of cfDNA, much higher than those [19.7% (13/66), 14.3% (10/70), and 6.7% (2/30)] only detected by mNGS of wcDNA. After in-depth analysis on these microbes with low loads set by reads per million (RPM), we found that more RPM and fungi/viruses/intracellular microbes were detected by mNGS of cfDNA than by mNGS of wcDNA. Besides, the abilities of mNGS using both cfDNA and wcDNA to detect microbes with high loads were similar. We highlighted the advantage of mNGS using cfDNA in detecting fungi, viruses, and intracellular microbes with low loads, and suggested that mNGS of cfDNA could be considered as the first choice for diagnosing pulmonary infections.


Assuntos
Ácidos Nucleicos Livres , Pneumonia , Vírus , Humanos , Ácidos Nucleicos Livres/genética , Sensibilidade e Especificidade , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus/genética , Fungos/genética , DNA
3.
BMC Surg ; 22(1): 405, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36419148

RESUMO

PURPOSE: This retrospective study was performed to analyze the clinical effects and complications of LSFCF in the surgical treatment of DLS combined with lumbar spinal stenosis (LSS). METHODS: A total of 26 eligible patients (mean age, 64.73 y; 17 men, 9 women) with DLS combined with LSS were included and LSFCF surgery was performed. An independent spine surgeon retrospectively reviewed the medical records and radiographs of all patients to evaluate surgical data and surgery-related complications. Preoperative, postoperative, and follow-up questionnaires were obtained to assess clinical outcomes. RESULTS: The average follow-up period of this study was 20.14 ± 5.21 months. The operation time and blood loss of patients underwent LSFCF were 129.33 ± 15.74 min and 356.13 ± 21.28 ml. The clinical effects of all patients in terms of visual analogue scale (VAS) and Oswestry disability index (ODI) have been significantly improved at the final follow-up postoperatively (P < 0.05). Complications such as infection, cerebrospinal fluid leakage, nerve injury, and internal fixation failure, etc. were not observed during the follow-up period. CONCLUSION: The LSFCF surgery is a safe and effective treatment for DLS patients combined with LSS.


Assuntos
Escoliose , Estenose Espinal , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Estenose Espinal/complicações , Estenose Espinal/cirurgia , Escoliose/cirurgia , Estudos Retrospectivos , Região Lombossacral , Resultado do Tratamento
4.
Foods ; 11(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36360109

RESUMO

OBJECTIVE: Walnuts have rich nutritional value and are favored by the majority of consumers. As walnuts are shelled nuts, they are prone to suffer from defects such as mildew during storage. The fullness and mildew of the fruit impose effects on the quality of the walnuts. Therefore, it is of great economic significance to carry out a study on the rapid, non-destructive detection of walnut quality. METHODS: Terahertz spectroscopy, with wavelengths between infrared and electromagnetic waves, has unique detection advantages. In this paper, the rapid and nondestructive detection of walnut mildew and fullness based on terahertz spectroscopy is carried out using the emerging terahertz transmission spectroscopy imaging technology. First, the normal walnuts and mildewed walnuts are identified and analyzed. At the same time, the image processing is carried out on the physical samples with different kernel sizes to calculate the fullness of the walnut kernels. The THz image of the walnuts is collected to extract the spectral information in different regions of interest. Four kinds of time domain signals in different regions of interest are extracted, and three qualitative discrimination models are established, including the support vector machine (SVM), random forest (RF), and k-nearest neighbor (KNN) algorithms. In addition, in order to realize the visual expression of walnut fullness, the terahertz images of the walnut are segmented with a binarization threshold, and the walnut fullness is calculated by the proportion of the shell and kernel pixels. RESULTS: In the frequency domain signal, the amplitude intensity from high to low is the mildew sample, walnut kernel, and walnut shell, and the distinction between walnut kernel, shell samples, and mildew samples is high. The overall identification accuracy of the aforementioned three models is 90.83%, 97.38%, and 97.87%, respectively. Among them, KNN has the best qualitative discrimination effect. In a single category, the recognition accuracy of the model for the walnut kernel, walnut shell, mildew sample, and reference group (background) reaches 94%, 100%, 97.43%, and 100%, respectively. The terahertz transmission images of the five categories of walnut samples with different kernel sizes are processed to visualize the detection of kernel fullness inside walnuts, and the errors are less than 5% compared to the actual fullness of walnuts. CONCLUSION: This study illustrates that terahertz spectroscopy detection can achieve the detection of walnut mildew, and terahertz imaging technology can realize the visual expression and fullness calculation of walnut kernels. Terahertz spectroscopy and imaging provides a non-destructive detection method for walnut quality, which can provide a reference for the quality detection of other dried nuts with shells, thus having significant practical value.

5.
Environ Toxicol ; 37(10): 2375-2387, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35785413

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with slow onset and high mortality. Epithelial-mesenchymal transition (EMT) is a significant condition for tissue fibrosis, and lncRNA-Snhg6 (small nucleolar RNA host gene 6) is related to EMT in some cancer cells, but its role in pulmonary fibrosis remains obscure. Here, we found that TGF-ß1 and Snhg6 were up-regulated in lung tissues of BLM-induced lung fibrosis mouse, and Snhg6 expression was significantly increased in primary lung fibroblasts after BLM treatment. Snhg6 knockdown notably alleviated the pulmonary dysfunction, and the increase of fibrosis area and collagen deposition induced by BLM. MiR-26a-5p was downregulated in BLM-induced fibrotic lung tissues, and it was negatively regulated by Snhg6. Silencing Snhg6 markedly alleviated the TGF-ß1-induced increase in fibrotic marker expression, cell proliferation, migration and differentiation, as well as the nuclear transport of p-Smad2/3 by modulating miR-26a-5p expression in mouse lung fibroblasts. Moreover, overexpressing Snhg6-induced collagen accumulation and fibroblast activation in fibroblasts, which was reversed by treatment with miR-26a-5p mimic or oxymatrine (an inhibitor of TGF-ß1-Smads pathway). Interestingly, silencing Snhg6 in vivo mitigated BLM-driven pulmonary fibrosis by regulating the miR-26a-5p/TGF-ß1-Smads axis. Our data revealed that Snhg6 contributed to the process of BLM-driven lung fibrosis in mouse by modulating the miR-26a-5p/TGF-ß1-Smads axis, suggesting that Snhg6 might be a therapeutic target for lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , RNA Longo não Codificante , Animais , Bleomicina/toxicidade , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
6.
World J Clin Cases ; 10(10): 3088-3100, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35647131

RESUMO

BACKGROUND: Pleural effusions occur for various reasons, and their diagnosis remains challenging despite the availability of different diagnostic modalities. Medical thoracoscopy (MT) can be used for both diagnostic and therapeutic purposes, especially in patients with undiagnosed pleural effusion. AIM: To assess the diagnostic efficacy and safety of MT in patients with pleural effusion of different causes. METHODS: Between January 1, 2012 and April 30, 2021, patients with pleural effusion underwent MT in the Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University (Shaanxi, China). According to the discharge diagnosis, patients were divided into malignant pleural effusion (MPE), tuberculous pleural effusion (TBPE), and inflammatory pleural effusion (IPE) groups. General information, and tuberculosis- and effusion-related indices of the three groups were analyzed. The diagnostic yield, diagnostic accuracy, performance under thoracoscopy, and complications of patients were compared among the three groups. Then, the significant predictive factors for diagnosis between the MPE and TBPE groups were analyzed. RESULTS: Of the 106 patients enrolled in this 10-year study, 67 were male and 39 female, with mean age of 57.1 ± 14.184 years. Among the 74 thoracoscopy-confirmed patients, 41 (38.7%) had MPE, 21 had (19.8%) TBPE, and 32 (30.2%) were undiagnosed. Overall diagnostic yield of MT was 69.8% (MPE: 75.9%, TBPE: 48.8%, and IPE: 75.0%, with diagnostic accuracies of 100%, 87.5%, and 75.0%, respectively). Under thoracoscopy, single or multiple pleural nodules were observed in 81.1% and pleural adhesions in 34.0% with pleural effusions. The most common complication was chest pain (41.5%), followed by chest tightness (11.3%) and fever (10.4%). Multivariate logistic regression analyses showed effusion appearance [odds ratio (OR): 0.001, 95%CI: 0.000-0.204; P = 0.010] and carcinoembryonic antigen (OR: 0.243, 95%CI: 0.081-0.728; P = 0.011) as significant for differentiating MPE and TBPE, with area under the receiver operating characteristic curve of 0.977 (95%CI: 0.953-1.000; P < 0.001). CONCLUSION: MT is an effective, safe, and minimally invasive procedure with high diagnostic yield for pleural effusion of different causes.

7.
Mol Ther Oncolytics ; 25: 236-248, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35615266

RESUMO

To date, diverse combination therapies with immune checkpoint inhibitors (ICIs), particularly oncolytic virotherapy, have demonstrated enhanced therapeutic outcomes in cancer treatment. However, high pre-existing immunity against the widely used adenovirus human serotype 5 (AdHu5) limits its extensive clinical application. In this study, we constructed an innovative oncolytic virus (OV) based on a chimpanzee adenoviral vector with low seropositivity in the human population, named AdC68-spE1A-αPD-1, which endows the parental OV (AdC68-spE1A-ΔE3) with the ability to express full-length anti-human programmed cell death-1 monoclonal antibody (αPD-1). In vitro studies indicated that the AdC68-spE1A-αPD-1 retained parental oncolytic capacity, and αPD-1 was efficiently secreted from the infected tumor cells and bound exclusively to human PD-1 (hPD-1) protein. In vivo, intratumoral treatment with AdC68-spE1A-αPD-1 resulted in significant tumor suppression, prolonged overall survival, and enhanced systemic antitumor memory response in an hPD-1 knockin mouse tumor model. This strategy outperformed the unarmed OV and was comparable with combination therapy with intratumoral injection of AdC68-spE1A-ΔE3 and systemic administration of commercial αPD-1. In summary, AdC68-spE1A-αPD-1 is a cost-effective approach with potential clinical applications. ‬‬‬‬.

8.
Toxicol Appl Pharmacol ; 439: 115926, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35182550

RESUMO

The implication of chaperonin containing T-complex protein-1 subunit 3 (CCT3) in carcinogenesis has been observed in a diverse malignancies. However, the relevance of CCT3 in non-small cell lung cancer (NSCLC) has not been well addressed. This research is dedicated to investigating the expression pattern and functional role of CCT3 in NSCLC. An elevation in CCT3 levels was observed in NSCLC tissue, which was linked to a reduced overall survival rate. The inhibition of CCT3 by shRNA-mediated gene silencing induced suppressive effects on the transformative phenotypes of NSCLC cells, including the inhibition of cell proliferation and invasion, and the induction of cell cycle arrest and apoptosis. Further investigation revealed that the silencing of CCT3 led to the suppression of Yes-associated protein 1 (YAP1), and decreased the expression of YAP1 target genes in NSCLC cells. The activation of YAP1 via forced expression of constitutively active YAP1 mutant reversed CCT3-restraint-evoked antitumor effects in NSCLC cells. Crucially, NSCLC cells with CCT3 silencing also exhibited weakened oncogenicity in nude mice associated with the down-regulation of YAP1 activation in xenografts. To sum up, these observations of our work show that the inhibition of CCT3 produces antitumor effects in NSCLC via the suppression of YAP1. This study unveils a possible role CCT3/YAP1 axis in NSCLC and suggests CCT3 as a candidate anticancer target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Chaperonina com TCP-1/metabolismo , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Chaperoninas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Proteínas de Sinalização YAP
9.
J Virol ; 96(1): e0149221, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668773

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than 235 million cases worldwide and 4.8 million deaths (October 2021), with various incidences and mortalities among regions/ethnicities. The coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize the angiotensin-converting enzyme 2 (ACE2) as the receptor to enter cells. We hypothesized that the genetic variability in ACE2 may contribute to the variable clinical outcomes of COVID-19. To test this hypothesis, we first conducted an in silico investigation of single-nucleotide polymorphisms (SNPs) in the coding region of ACE2. We then applied an integrated approach of genetics, biochemistry, and virology to explore the capacity of select ACE2 variants to bind coronavirus spike proteins and mediate viral entry. We identified the ACE2 D355N variant that restricts the spike protein-ACE2 interaction and consequently limits infection both in vitro and in vivo. In conclusion, ACE2 polymorphisms could modulate susceptibility to SARS-CoV-2, which may lead to variable disease severity. IMPORTANCE There is considerable variation in disease severity among patients infected with SARS-CoV-2, the virus that causes COVID-19. Human genetic variation can affect disease outcome, and the coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize human ACE2 as the receptor to enter cells. We found that several missense ACE2 single-nucleotide variants (SNVs) that showed significantly altered binding with the spike proteins of SARS-CoV, SARS-CoV-2, and NL63-HCoV. We identified an ACE2 SNP, D355N, that restricts the spike protein-ACE2 interaction and consequently has the potential to protect individuals against SARS-CoV-2 infection. Our study highlights that ACE2 polymorphisms could impact human susceptibility to SARS-CoV-2, which may contribute to ethnic and geographical differences in SARS-CoV-2 spread and pathogenicity.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Predisposição Genética para Doença/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Variação Genética , Humanos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
10.
Environ Toxicol ; 36(11): 2225-2235, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34323359

RESUMO

Angiomotin-like 2 (AMOTL2) is a key modulator of signaling transduction and participates in the regulation of various cellular progresses under diverse physiological and pathological conditions. However, whether AMOTL2 participates in asthma pathogenesis has not been fully studied. In the present work, we studied the possible role and mechanism of AMOTL2 in regulating transforming growth factor-ß1 (TGF-ß1)-induced proliferation and extracellular matrix (ECM) deposition of airway smooth muscle (ASM) cells. Our results showed marked reductions in the abundance of AMOTL2 in TGF-ß1-stimulated ASM cells. Cellular functional investigations confirmed that the up-regulation of AMOTL2 dramatically decreased the proliferation and ECM deposition induced by TGF-ß1 in ASM cells. In contrast, the depletion of AMOTL2 exacerbated TGF-ß1-induced ASM cell proliferation and ECM deposition. Further research revealed that the overexpression of AMOTL2 restrained the activation of Yes-associated protein 1 (YAP1) in TGF-ß1-stimulated ASM cells. Moreover, the reactivation of YAP1 markedly reversed AMOTL2-mediated suppression of TGF-ß1-induced ASM cell proliferation and ECM deposition. Together, these findings suggest that AMOTL2 restrains TGF-ß1-induced proliferation and ECM deposition of ASM cells by down-regulating YAP1 activation.


Assuntos
Proteínas de Transporte/genética , Matriz Extracelular , Miócitos de Músculo Liso , Fator de Crescimento Transformador beta1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Camundongos , Miócitos de Músculo Liso/citologia , Fator de Crescimento Transformador beta1/farmacologia , Proteínas de Sinalização YAP
11.
Front Immunol ; 12: 697074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262569

RESUMO

The development of a safe and effective vaccine against SARS-CoV-2, the causative agent of pandemic coronavirus disease-2019 (COVID-19), is a global priority. Here, we aim to develop novel SARS-CoV-2 vaccines based on a derivative of less commonly used rare adenovirus serotype AdC68 vector. Three vaccine candidates were constructed expressing either the full-length spike (AdC68-19S) or receptor-binding domain (RBD) with two different signal sequences (AdC68-19RBD and AdC68-19RBDs). Single-dose intramuscular immunization induced robust and sustained binding and neutralizing antibody responses in BALB/c mice up to 40 weeks after immunization, with AdC68-19S being superior to AdC68-19RBD and AdC68-19RBDs. Importantly, immunization with AdC68-19S induced protective immunity against high-dose challenge with live SARS-CoV-2 in a golden Syrian hamster model of SARS-CoV-2 infection. Vaccinated animals demonstrated dramatic decreases in viral RNA copies and infectious virus in the lungs, as well as reduced lung pathology compared to the control animals. Similar protective effects were also found in rhesus macaques. Taken together, these results confirm that AdC68-19S can induce protective immune responses in experimental animals, meriting further development toward a human vaccine against SARS-CoV-2.


Assuntos
Vacinas contra Adenovirus/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Esquemas de Imunização , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Vacinação/métodos , Vacinas contra Adenovirus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Cricetinae , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pan troglodytes , RNA Viral/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Transfecção , Resultado do Tratamento
12.
PLoS One ; 16(4): e0247884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33905407

RESUMO

Species-specific monitoring activities represent fundamental tools for natural resource management and conservation but require techniques that target species-specific traits or markers. Sea lamprey, a destructive invasive species in the Laurentian Great Lakes and conservation target in North America and Europe, is among very few fishes that possess and use oral suction, yet suction has not been exploited for sea lamprey control or conservation. Knowledge of specific characteristics of sea lamprey suction (e.g., amplitude, duration, and pattern of suction events; hereafter 'suction dynamics') may be useful to develop devices that detect, record, and respond to the presence of sea lamprey at a given place and time. Previous observations were limited to adult sea lampreys in static water. In this study, pressure sensing panels were constructed and used to measure oral suction pressures and describe suction dynamics of juvenile and adult sea lampreys at multiple locations within the mouth and in static and flowing water. Suction dynamics were largely consistent with previous descriptions, but more variation was observed. For adult sea lampreys, suction pressures ranged from -0.6 kPa to -26 kPa with 20 s to 200 s between pumps at rest, and increased to -8 kPa to -70 kPa when lampreys were manually disengaged. An array of sensors indicated that suction pressure distribution was largely uniform across the mouths of both juvenile and adult lampreys; but some apparent variation was attributed to obstruction of sensing portal holes by teeth. Suction pressure did not differ between static and flowing water when water velocity was lower than 0.45 m/s. Such information may inform design of new systems to monitor behavior, distribution and abundance of lampreys.


Assuntos
Petromyzon/fisiologia , Animais , Peixes/fisiologia , Espécies Introduzidas/tendências , Lampreias/fisiologia , Petromyzon/metabolismo , Pressão , Sucção
13.
PLoS Pathog ; 17(3): e1009392, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760889

RESUMO

Coronavirus interaction with its viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkey, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants behind the ability of ACE2 orthologs to support viral entry, we compared koala and mouse ACE2 sequences with that of human and identified the key residues in koala and mouse ACE2 that restrict viral receptor activity. Humanization of these critical residues rendered both koala and mouse ACE2 capable of binding the spike protein and facilitating viral entry. Our study shed more lights into the genetic determinants of ACE2 as the functional receptor of SARS-CoV-2, which facilitates our understanding of viral entry.


Assuntos
COVID-19/enzimologia , COVID-19/genética , Peptidil Dipeptidase A/genética , Receptores Virais/genética , SARS-CoV-2/fisiologia , Animais , Sequência de Bases , COVID-19/virologia , Especificidade de Hospedeiro , Humanos , Camundongos/genética , Camundongos/virologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Phascolarctidae/genética , Phascolarctidae/virologia , Receptores Virais/metabolismo , SARS-CoV-2/genética , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
14.
Mol Cell Probes ; 53: 101628, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32621848

RESUMO

PDZ and LIM domain containing protein 2 (PDLIM2) has been identified as a vital tumor-associated gene that is aberrantly expressed in various types of tumors. Yet, the involvement of PDLIM2 in non-small cell lung cancer (NSCLC) is currently undetermined. The design of the current study was to evaluate whether PDLIM2 plays a role in NSCLC. We found that PDLIM2 expression was commonly decreased in NSCLC tissues. Moreover, low expression of PDLIM2 was also detected in NSCLC cell lines and demethylation treatment restored PDLIM2 expression. The re-expression of PDLIM2 impeded the proliferative, colony-forming, and invasive capabilities of NCLCL cells. In contrast, depletion of PDLIM2 markedly enhanced the malignant behaviors of NSCLC cells. Notably, PDLIM2 overexpression downregulated the expression of nuclear factor (NF)-κB p65 subunit and repressed NF-κB transcription reporter activity in NSCLC cells. The overexpression of p65 significantly reversed PDLIM2-mediated antitumor effects in NSCLC cells. Additionally, the Xenograft tumor formation assay revealed that the overexpression of PDLIM2 markedly restricted the tumor growth of NSCLC in vivo. Overall, our study confirms that PDLIM2 acts as a tumor-inhibitor in NSCLC through the inactivation of NF-κB, suggesting PDLIM2 as a candidate therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação para Baixo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Neoplasias Pulmonares/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Transplante de Neoplasias , Transdução de Sinais
15.
Inflammation ; 41(6): 2079-2089, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30022363

RESUMO

Peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone (PGZ) exhibits potential protective effects in asthma. Recently, regulator of G protein 4 (RGS4) has been reported to be associated with immunological and inflammatory responses. However, no evidence has shown the influence of PPARγ on RGS4 expression in airway disorders. In this study, BALB/c mice received ovalbumin (OVA) sensitization followed by OVA intranasal challenge for 90 days to establish a chronic asthma mouse model. Accompanied with OVA challenge, the mice received administration of PPARγ agonist PGZ (10 mg/kg) intragastrically or RGS4 inhibitor CCG 63802 (0.5 mg/kg) intratracheally. Invasive pulmonary function tests were performed 24 h after last challenge. Serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected for further analyses after the mice were sacrificed. We found that PPARγ agonist PGZ administration significantly attenuated the pathophysiological features of OVA-induced asthma and increased the expression of RGS4. In addition, the attenuating effect of PGZ on airway inflammation, hyperresponsiveness (AHR), and remodeling was partially abrogated by administration of RGS4 inhibitor CCG 63802. We also found that the downregulation of RGS4 by CCG 63802 also significantly increased inflammatory cell accumulation and AHR, and increased levels of IL-4, IL-13, eotaxin, IFN-γ, and IL-17A in BALF, and total and OV-specific IgE in serum. Furthermore, the inhibitory effects of PGZ on the activations of ERK and Akt/mTOR signaling, and MMPs were apparently reversed by CCG 63802 administration. In conclusion, the protective effect of PGZ on OVA-induced airway inflammation and remodeling might be partly regulated by RGS4 expression through ERK and Akt/mTOR signaling.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/prevenção & controle , PPAR gama/agonistas , Pioglitazona/farmacologia , Proteínas RGS/metabolismo , Animais , Sistema de Sinalização das MAP Quinases , Camundongos , Ovalbumina/imunologia , Pioglitazona/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR
16.
Oncol Rep ; 36(5): 3051-3057, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27599551

RESUMO

Sirtuin7 (SIRT7) plays an important role in many cancer types, but its function in non-small cell lung cancer (NSCLC) remains unclear. This study investigated the biological role and underlying mechanism of SIRT7 in NSCLC. Results showed that SIRT7 was highly expressed in NSCLC cell lines, as detected by real-time quantitative polymerase chain reaction and western blot analysis. SIRT7 knockdown by small interfering RNA (siRNA) significantly inhibited the growth of NSCLC cells and induced their apoptosis. Bioinformatics algorithms indicated that SIRT7 was a putative target of microRNA-3666 (miR-3666). Dual-luciferase reporter assay demonstrated that miR-3666 could target the 3'-untranslated region of SIRT7. Western blot analysis revealed that miR-3666 could regulate the protein expression of SIRT7. The miR-3666 overexpression significantly inhibited NSCLC cell growth. The restoration of SIRT7 protein expression significantly abrogated the effect of the miR-3666 overexpression. Moreover, SIRT7 depletion induced by siRNA or miR-3666 overexpression promoted the expression of pro-apoptotic genes. Taken together, our study suggests that SIRT7 functions as an oncogene in NSCLC, and miR-3666 can target SIRT7 to inhibit NSCLC cell growth by promoting the pro-apoptotic signaling pathway. Thus, this study provides novel insights into the development of new and potential treatments for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , MicroRNAs/genética , Sirtuínas/biossíntese , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , RNA Interferente Pequeno/genética , Transdução de Sinais , Sirtuínas/genética
17.
Mol Immunol ; 75: 144-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27289030

RESUMO

The purpose of this study was to evaluate the effects of GATA-6 on airway inflammation and remodeling and the underlying mechanisms in a murine model of chronic asthma. Female BALB/c mice were randomly divided into four groups: phosphate-buffered saline control (PBS), ovalbumin (OVA)-induced asthma group (OVA), OVA+ siNC and OVA+ siGATA-6. In this mice model, GATA-6 expression level was significantly elevated and the expression in Caveolin-1 (Cav-1) inversely correlated with the abundance of GATA-6 in OVA-induced asthma of mice. Silencing of GATA-6 gene expression upregulated Cav-1 expression. Additionally, downregulation of GATA-6 dramatically decreased OVA-challenged inflammation, infiltration, and mucus production. Moreover, silencing of GATA-6 resulted in decreased levels of immunoglobulin E (IgE) and inflammatory mediators and reduced inflammatory cell accumulation, as well as inhibiting the expression of important mediators including matrix metalloproteinase (MMP)-2 and MMP-9, TGF-ß1, and a disintegrin and metalloproteinase 8 (ADAM8) and ADAM33, which is related to airway remodeling. Further analysis confirmed that silencing of GATA-6 attenuated OVA-induced airway inflammation and remodeling through the TLR2/MyD88 and NF-κB pathway. In conclusion, these findings indicated that the downregulation of GATA-6 effectively inhibited airway inflammation and reversed airway remodeling via Cav-1, at least in part through downregulation of TLR2/MyD88/NF-κB, which suggests that GATA-6 represents a promising therapeutic strategy for human allergic asthma.


Assuntos
Remodelação das Vias Aéreas/imunologia , Asma/imunologia , Caveolina 1/biossíntese , Fator de Transcrição GATA6/biossíntese , Transdução de Sinais/imunologia , Animais , Asma/metabolismo , Western Blotting , Caveolina 1/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Fator de Transcrição GATA6/imunologia , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo
18.
Am J Transl Res ; 8(4): 1730-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27186296

RESUMO

OBJECTIVE: The aim of this study is to estimate the role of JAK/STAT3 signaling pathway on apoptosis of lung adenocarcinoma induced by icotinib. METHODS: EGFR mutation was detected in lung adenocarcinoma cell line PC-9 by ARMS assay; The inhibitory rates of cell proliferation of PC-9 cells which were exposed to different concentrations of icotinib (0~100 µMol/L) for different time (24~72 h) respectively were evaluated by MTT assay; Apoptosis of PC-9 cells exposed to different concentrations of icotinib (0, 0.1, 1 and 10 µMol/L) for 48 h were evaluated by TUNEL assay; JAK2, STAT3, Bcl-2, Bax mRNA expressions were evaluated by Real-time PCR assay; The protein levels of P-STAT3 and IL-6 were evaluated by Western-blot assay. RESULTS: Human lung adenocarcinoma cell line PC-9 had an exon 19 deletion mutation in EGFR gene; Followed by treatment of icotinib, the proliferation of PC-9 cells were all inhibited significantly, especially in 48 and 72 h (P<0.01) in all concentrations; The inhibitory rates of cell proliferation in different treating time had statistical significance (P<0.01); Cell apoptosis in different concentrations were increased significantly (P<0.05); Along with the increasing concentrations, gene expression levels of JAK2, STAT3 and Bcl-2 decreased significantly (P<0.05), Bax increased significantly (P<0.05), JAK2/STAT3 ratios increased significantly (P<0.01), and Bcl-2/bax ratios decreased significantly (P<0.01); P-STAT3 and IL-6 protein levels were inhibited significantly in higher concentration. CONCLUSIONS: JAK/STAT3 signaling pathway participates in apoptosis of PC-9 cells induced by icotinib. The most likely mechanism is icotinib inhibited the gene expression levels of JAK2, STAT3 and Bcl-2, so with the P-STAT3 and IL-6 protein levels, and mediated gene Bax overexpression.

19.
Exp Lung Res ; 41(10): 535-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26651881

RESUMO

BACKGROUND: Asthma is characterized by airway remodeling arising from an increase in airway smooth muscle (ASM) mass. This increase is regulated in part by ASM cell proliferation and migration. MicroRNA (miR)-21 also plays a role in asthma, but the molecular mechanisms underlying its effects are not completely understood. This study investigated the effects and mechanism of miR-21 on the human ASM (HASM) cell proliferation and migration. MATERIALS AND METHODS: HASM cells were transduced with a miR-21 vector, and the expression of miR-21 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of the miR-21 on HASM cell proliferation and migration was analyzed by CCK8 and transwell assay. The expression level of PTEN (phosphatase and tensin homolog deleted on chromosome 10) in HASM cells was assessed by qRT-PCR and Western blot analysis. Meanwhile, the activity of PTEN was measured by PTEN malachite green assay kit. RESULTS: Lentivirus-mediated miR-21 overexpression markedly enhanced the proliferation and migration of HASM cells (P < .05), and ablation of miR-21 by anti-miR-21 inhibitor markedly reduced cell proliferation and migration. We demonstrated that miR-21 overexpression significantly reduced the expression of PTEN (P < .05), while PTEN knock-down markedly increased HASM cell proliferation and migration. Furthermore, we found that overexpression of PTEN led to a decrease of HASM cell proliferation and migration. MiR-21 mediated HASM cell proliferation and migration through activation of the phosphoinositide 3-kinase pathway. CONCLUSIONS: This study provides the first in vitro evidence that overexpression of miR-21 in HASM cells can trigger cell proliferation and migration, and the effects of miR-21 depend on the level of PTEN.


Assuntos
Asma/patologia , Brônquios/citologia , Movimento Celular , Proliferação de Células , MicroRNAs/fisiologia , Miócitos de Músculo Liso/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Células Cultivadas , Humanos , MicroRNAs/análise , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais
20.
Biochem Biophys Res Commun ; 465(1): 125-30, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26235874

RESUMO

Epithelial-mesenchymal transition (EMT) has been shown to be related to the pathogenesis of various diseases. Recently, microRNAs (miRNA) have been recognized as a new class of genes involved in human tumorigenesis. In this study, we found that the expression levels of miR-135a were dramatically decreased in NSCLC cell lines and clinical NSCLC tissue samples. Then, we demonstrated that miR-135a significantly suppressed the migration and invasion of lung cancer cells in vitro, suggesting that miR-135a may be a novel tumor suppressor. Further studies revealed that the transcription factor KLF8 was a target gene of miR-135a in NSCLC cells, as miR-135a bound directly to the 3'-untranslated region (3'-UTR) of KLF8, thus reducing both the expression of KLF8 at the mRNA and protein levels. In addition, the EMT marker E-cadherin or vimentin was also down-regulated or up-regulated on miR-135a treatment. Moreover, silencing KLF8 was able to inhibit the migration and invasion of lung cancer cells. In conclusion, these findings indicate that miR-135a suppresses the migration and invasion of NSCLC cells through targeting KLF8, which is involved in the EMT process. This finding provides new insight into the mechanism of NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas Repressoras/genética , Regiões 3' não Traduzidas , Caderinas/genética , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Genes Reporter , Humanos , Fatores de Transcrição Kruppel-Like , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Invasividade Neoplásica , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais , Vimentina/genética , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...