Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Environ Sci Health B ; 54(4): 317-325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729870


This study evaluated the hydrolysis and photolysis kinetics of pyraclostrobin in an aqueous solution using ultra-high-performance liquid chromatography-photodiode array detection and identified the resulting metabolites of pyraclostrobin by hydrolysis and photolysis in paddy water using high-resolution mass spectrometry coupled with liquid chromatography. The effect of solution pH, metal ions and surfactants on the hydrolysis of pyraclostrobin was explored. The hydrolysis half-lives of pyraclostrobin were 23.1-115.5 days and were stable in buffer solution at pH 5.0. The degradation rate of pyraclostrobin in an aqueous solution under sunlight was slower than that under UV photolysis reaction. The half-lives of pyraclostrobin in a buffer solution at pH 5.0, 7.0, 9.0 and in paddy water were less than 12 h under the two light irradiation types. The metabolites of the two processes were identified and compared to further understand the mechanisms underlying hydrolysis and photolysis of pyraclostrobin in natural water. The extracted ions obtained from paddy water were automatically annotated by Compound Discoverer software with manual confirmation of their fragments. Two metabolites were detected and identified in the pyraclostrobin hydrolysis, whereas three metabolites were detected and identified in the photolysis in paddy water.

Estrobilurinas/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , China , Cromatografia Líquida de Alta Pressão , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectrometria de Massas , Fotólise , Estrobilurinas/metabolismo , Luz Solar , Tensoativos/química , Raios Ultravioleta , Água/química , Poluentes Químicos da Água/metabolismo
J Environ Sci Health B ; : 1-9, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30024815


The degradation dynamics and terminal residues of dufulin enantiomers were investigated in two typical corn plants. A convenient and precise chiral method by high-performance liquid chromatography coupled with tandem triple quadrupole mass spectrometry (HPLC/MS/MS) using a Chiralpak IC column was developed and validated for measuring dufulin enantiomers in corn plants and corn. The two enantiomers of dufulin quickly dissipated in the corn plant, and no noticeable stereoselectivity was observed during degradation or in the final residues. After 30% rac-dufulin wettable powder with a 1- to 1.5-fold dose of the recommended value was sprayed two to three times on corn plants, the residue levels of S-(+)-dufulin and R-(-)-dufulin in corn from both sites were lower than or equal to 0.0520 mg kg-1 on days 7, 14 and 21 after the last application. The dietary risk assessment indicated that dufulin did not exhibit obvious dietary health risks in corn samples when good agricultural practices were implemented. The findings from this study may be used to better understand the chiral profiles of dufulin in the environment and the effect of dufulin residues in corn on health.